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ABSTRACT 

To improve the competitiveness of marine container terminals, it is critical to minimize 

the makespan of a container vessel.  The makespan is defined as the latest completion 

time among all handling tasks of the container vessel.  Lower makespan (i.e. lower vessel 

turn time) can be achieved through better scheduling of the container handling equipment 

during vessel operations.  The scheduling of terminal equipment is an operational 

problem, and a detailed schedule for each type of equipment operating in the terminal is 

necessary.  Several studies have applied operations research techniques to optimize the 

processes of equipment in a terminal.  This dissertation investigates three main operations 

in a marine container terminal, namely: quay crane scheduling, yard truck scheduling and 

yard crane scheduling.   

The first study in this dissertation addresses the quay crane scheduling problem 

(QCSP), which is known to be NP-hard.  A genetic algorithm (GA) was developed and 

tested on several benchmark instances.  An initial solution based on the S-LOAD rule, a 

new approach for defining the chromosomes, and new procedures for calculating tighter 

lower and upper bounds for the decision variables were used to improve the efficiency of 

the GA search.  In comparison with best available solutions, our method was able to find 

optimal or near-optimal solution in significantly shorter time for larger problems.   

The second study of this dissertation addresses the quay crane scheduling problem with 

time windows (QCSPTW).  A GA was developed to solve the problem.  Unlike other 
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works, the proposed solution approach allows quay cranes (QCs) to move in directions 

independent of one another, and in certain situations, the QCs are allowed to change their 

directions.  Using benchmark instances, it was shown that the developed GA can provide 

near optimal solutions in a faster time for medium and large-sized instances and provides 

an improvement in the solution quality for instances with fragmented time windows.   

The equipment involved in each of three main operations of a container terminal 

are highly interrelated, and therefore, it is necessary to consider the operations of QCs, 

yard trucks (YTs), and yard cranes (YCs) in a holistic manner.  The third study of this 

dissertation addresses the scheduling of QCs and YTs jointly.  The integrated problem 

can be seen as an extension of the classical flow shop with parallel machines at each 

stage, which has been proved to be NP-hard.  A mixed integer programming model was 

developed based on hybrid flow shop scheduling problem with precedence relationship 

between tasks, QC interference, QC safety margin, and blocking constraints.  A GA 

combined with a greedy algorithm was developed to solve the problem.  The GA 

solutions demonstrated that the developed integrated model is solvable within reasonable 

time for an operational problem.   

The fourth study of this dissertation developed a robust optimization model that 

considers all three equipment jointly.  The unique difference between the fourth study 

and the existing literature is that it accounts for the non-deterministic nature of container 

processing times by the QCs, YTs, and YCs.  To deal with the uncertainty in processing 

times, a model was formulated based on a recent robust optimization approach (p-robust).  

The objective function of the proposed model seeks to minimize the nominal scenario 

makespan, while bounding the makespan of all possible scenarios using the p-robustness 
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constraints.  To solve the robust integrated optimization model, a GA was developed.  

The experimental results demonstrated that the developed robust integrated model is 

solvable within reasonable time for an operational problem.   
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CHAPTER 1 

INTRODUCTION 

 

Containerization has grown dramatically in the last decade.  UNCTAD (United Nations, 

2012) report indicates that the world container trade, expressed in twenty-foot equivalent 

units (TEUs), has grown 7.1% in 2011.  The world container terminal throughput has 

increased by 5.9% to its highest level ever (572.8 million TEUs) in 2011.  To respond to 

this increase in container trade, marine container terminals need to improve their level of 

service.  Container terminals play an important role in a nation’s economy, infrastructure, 

and quality of life by providing the link between domestic markets to international 

customers and visa-versa.  The success of a marine container terminal is critical to the 

success of the intermodal freight supply chain.   

The primary objective of a container terminal is to achieve the minimum vessel 

turn time at a minimum cost.  The operation cost of a modern container vessel is around 

$30,000 to $40,000 per day, and therefore, vessel turn time is known to be an important 

factor in the overall cost of container transportation.  Container terminal operations 

involve various processes and deployment of expensive resources.  Effective scheduling 

of equipment is crucial in each process to obtain optimal results. 

This dissertation addresses three primary processes in marine terminal operations: 

1) QC scheduling, 2) YT scheduling, and 3) YC scheduling.   
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All of these processes are concerned with resource optimization and share the 

common objective of minimizing the vessel turn time to enhance the terminal’s 

competitiveness. 

 

1.1 RESEARCH TOPIC I – QUAY CRANE SCHEDULING PROBLEM 

Due to the significant impact of the QCs on terminal throughput, the QC 

scheduling problem (QCSP) has received considerable attention.  The first study in this 

dissertation addresses the QC scheduling problem which has been proved to be NP-hard.  

A GA is proposed to tackle the problem.  The efficiency of the GA search has been 

improved by using an initial solution based on the S-LOAD rule developed by Sammarra 

et al. (2007), using a new approach for defining the chromosomes to reduce the number 

of decision variables, and using new procedures for calculating tighter lower and upper 

bounds for the decision variables.  Experimental results showed that the developed GA 

finds the solutions in faster time for larger problems compared to the available best-

known solutions.  A literature review of related studies is presented in Chapter 2.  

Readers are referred to Chapter 3 of this dissertation for an overview of the QC 

scheduling problem and the proposed GA for solving the problem.   

 

1.2 RESEARCH TOPIC II – QUAY CRANE SCHEDULING WITH TIME WINDOWS 

The assignment of the QCs to vessels may result in time windows for QCs that 

consist of different ready times and withdrawal times.  In practice, higher priority vessels 

may require additional QCs at certain times to expedite operations.  Thus, QCs are 

temporarily removed from lower priority vessels.  The second study of this dissertation 
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addresses the QC scheduling problem with time windows (QCSPTW) and aims to 

determine the task sequence for each QC to minimize the vessel turn time while 

satisfying time availability of the cranes.  An efficient GA is proposed for solving the 

QCSPTW.  The proposed approach contributes to the available literature in that the 

cranes are allowed to move in different directions independently and are allowed to 

change their directions in particular cases.  Numerical experiments show that the 

developed GA can provide near optimal solutions in a faster time for medium and large-

sized instances and that the developed GA improves the solution quality (lower vessel 

turn time) for instances with fragmented time windows.  A review of related studies is 

presented in Chapter 2.  Readers are referred to Chapter 4 of this dissertation for more 

information on the QC scheduling problem with time windows and the proposed solution 

methodology.  

 

1.3 RESEARCH TOPIC III – INTEGRATED QUAY CRANE AND YARD TRUCK 

SCHEDULING FOR UNLOADING INBOUND CONTAINERS 

Most studies have optimized the processes in a marine container terminal 

independently.  Given that there is no buffer area available at the berth, a QC cannot 

proceed with the next task until a truck is available to accept the container and vice versa.  

Thus, the operations of QCs and YTs are highly interrelated.  It is necessary to develop 

and solve these operations in an integrated manner that reflects the characteristics of the 

marine container terminals.  The third study of this dissertation develops a mixed integer 

programming model for scheduling QCs and YTs jointly.  The developed model is based 

on the hybrid flow shop scheduling technique and it extends the existing body of work by 
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considering multiple QCs, non-crossing constraint, and safety margins between QCs.  A 

GA combined with a greedy algorithm is developed to solve the model.  A review of 

related studies is presented in Chapter 2.  Readers are referred to Chapter 5 of this 

dissertation for more information about the hybrid flow shop scheduling method, the 

developed integrated QC and YT scheduling model, the implementation of the solution 

approach, and relevant results.   

 

1.4 RESEARCH TOPIC IV – ROBUST SCHEDULING OF TERMINAL CONTAINER 

HANDLING EQUIPMENT 

Chapter 6 of this dissertation addresses the integrated scheduling of QCs, YTs, 

and YCs.  An integrated model is developed that considers all three stages of vessel 

operation: the unloading of the containers by QCs, transport of the containers by YTs, 

and finally, the stacking of the containers by YCs.  Important operational constraints like 

precedence relationship among tasks, QC interference, safety margin, and blocking are 

taken into account.  To the best of our knowledge, this is the first study that considers 

non-deterministic task processing times and proposes a robust model to solve the 

integrated scheduling problem.  A solution approach is developed to solve the robust 

problem, and its effectiveness is tested using numerical experiments.  A literature review 

on related studies is presented in Chapter 2.   Readers are referred to Chapter 6 for more 

information on the developed robust integrated model and the proposed solution 

approach.  
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1.5 LIST OF PAPERS AND STRUCTURE OF DISSERTATION  

This dissertation includes four research papers published, accepted or submitted 

to peer-reviewed journals.  The author of this dissertation is the “first author” of these 

articles:  

1. Kaveshgar, N., Huynh, N., & Khaleghi Rahimian, S. (2012). An efficient genetic 

algorithm for solving the quay crane scheduling problem. Expert Systems with 

Applications, 39(18): 13108-13117. 

2. Kaveshgar, N., & Huynh, N. A Genetic Algorithm Heuristic for Solving the Quay 

Crane Scheduling Problem with Time Windows. Accepted by Maritime Economics and 

Logistics, 11/04/2014.   

3. Kaveshgar N., & N. Huynh. Integrated Quay Crane and Yard Truck Scheduling for 

Unloading Inbound Containers. Accepted by International Journal of Production 

Economics, 09/17/2014. 

4. Kaveshgar N., & N. Huynh. Robust Scheduling of Terminal Container Handling 

Equipment. Submitted to Computers & Operations Research, 09/17/2014. 

The remaining chapters are organized as follows: Chapter 2 provides a review of 

marine container terminal operations and highlights the related studies.  Chapters 3 to 6 

include the four research topics mentioned above.  Lastly, chapter 7 provides summary 

and concluding remarks. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

This chapter provides a broad overview of marine container terminal operations.  

It also presents a literature review on the four studies in this dissertation.   

 

2.1 MARINE CONTAINER TERMINAL BACKGROUND 

The cargo transported in ocean vessels could be classified into two main 

categories: bulk and containerized cargo.  Bulk cargo is shipped using specialized vessels 

called bulk carriers in large quantities.  Crude oil, coal, ores and grains are some 

examples of bulk cargo.  Containerized cargo includes a variety of goods that are packed 

into standard-size steel containers and shipped on container vessels.  The current 

dissertation focuses on containerized cargo.  A marine container terminal is the place 

where vessels berth and unload inbound (import) containers and pick up outbound 

(export) containers.  Containers are steel boxes with dimensions of 20×8×8.5 (ft3) or 

20×8×9.5 (ft3), measured in TEU (20 ft. equivalent units) and 40×8 ×8.5 (ft3) or 

40×8×9.5 (ft3) measured in FEU (40 ft. equivalent units).  Specialized containers, like 

refrigerated containers (used for cargo that must be kept at special cold temperatures 

during transit), may have slightly different size.  The TEU used to be the most common 

container size, but the FEU is beginning to be more common (Murty et al. 2005).   
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Figure 2.1 illustrates the typical layout of a marine container terminal: a quay side 

area with berths for vessels to dock and a container yard to store containers.  The storage 

yard is usually divided into rectangular regions called blocks.   

 

 

Figure 2.1 Layout of a marine container terminal. 

 

Inside a container vessel, containers are stacked on top of each other.  Figure 2.2 

shows the side view of a container vessel.  The vessel is divided along its length to 

several storage areas.  The storage areas are known as holds or bays.  A bay is divided 

vertically into two sections, below deck (hold) and on deck.  The number of bays depends 

on the size of the container vessel and might be as high as 15.  Some large container 

vessels are capable of carrying over 7000 TEUs (Murty et al, 2005). 

 

Quay Crane Yard Crane Yard Truck 
Container 

Quay Area 

Yard Area 
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Figure 2.2 Side view of a container vessel.   

 

Containers are typically divided into groups.  This is based on the container size, 

port of discharge, and container weight.  A task is defined as a group of containers which 

are usually located on neighboring bays in the vessel.  Operationally, there is a 

precedence relationship between container groups.  As an instance, the unloading 

operation must precede the loading operation for tasks/containers located in the same ship 

bay.  Also, when the tasks share the same bay, the unloading operation must start with the 

tasks located on the deck before proceeding to the ones in the hold (below deck).  During 

the loading operation the tasks in the hold must be loaded before those on the deck.   

The main functions of a container terminal are to 1) serve as an interface between 

ocean and land transportation, 2) receive outbound (export) containers from shippers for 

loading into vessels, 3) unload inbound (import) containers from vessels to be picked up 

by consignees and, finally 4) provide a temporary storage of containers between ocean 

and land transportation. 

 

2.2 FLOW OF CONTAINERS IN A MARINE TERMINAL 

To further explain the operations in a marine container terminal, it is necessary to 

illustrate the flow of inbound and outbound containers.  The loading/unloading operation 

Upper Deck 

Lower Deck 
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starts when a vessel berths along the quay area.  The unloading operation for the inbound 

containers consists of three stages: 1) the QCs collect the containers from the vessel and 

load them onto the YTs or internal trucks (ITs), 2) the YTs transfer the containers to the 

YCs, and 3) the YCs store the containers in the designated blocks of yard area.  The 

loading operations consist of the same stages in reverse order.  Outbound containers 

brought in by customer external trucks (XTs) enter the container terminal through 

terminal gates.  At the gates, the container and its documentation are checked.  The XTs 

will then proceed to the storage area where the container will be stored by YCs.  The 

container will remain in the storage area until the vessel on which it will be loaded 

arrives.  When the vessel arrives, the YC removes the container from the stored position, 

puts it on an IT, and the IT takes the container to a QC for loading into the vessel.  The 

flow of outbound containers is represented in Figure 2.3. 

As shown in Figure 2.3, the flow of containers can be seen as a composition of 

four subsystems: 1) loading/unloading to/from vessel from/to berth (QCs operation), 2) 

transport to/from quay area to yard area (ITs operation), 3) storage in yard area (YCs 

operation), and 4) delivery/receipt to/from customer (XTs operation).  Each container 

goes through these subsystems between the vessel and designated customer.  Each of 

these subsystems has a container handling capacity.  This capacity is based on the 

operational strategy in the subsystem and resources deployed.  The performance of the 

container terminal depends on the performance of these subsystems, and a bottleneck in 

any of these subsystems will decrease the terminal throughput (Henesey, 2006). 
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(a) 

(b) 

Figure 2.3 Flow of (a) outbound and (b) inbound containers. (Modified from Rashidi and 
Tsang, 2006) 

 

2.3 PROCESSES IN CONTAINER TERMINALS 

Container terminal operations include several processes in the four subsystems 

mentioned previously.  This section presents the various scheduling decisions, different 

equipment involved in each scheduling decision, and the related existing literature.  The 

literature section starts with a comprehensive survey of the studies on container terminal 

operations.  The work by Vis and de Koster (2003) reviewed the literature of decision 

problems in a marine container terminal.  The problems include arrival of a vessel, 

unloading and loading of vessel, transport of containers from vessel to stack yard, and 

stacking and retrieving of containers.  Another work by Steenken et al. (2004) addressed 

the logistic processes of storage, stacking, and transport optimization.  Murty et al. (2005) 

studied optimization decisions, such as: berth allocation, QC allocation, XT appointment 

allocation, truck routing, terminal gate dispatching policies, storage space assignment, 

Customer XT Gate XT Yard 
Area YC IT Quay 

Area QC Vessel 

Customer XT Gate XT Yard 
Area YC IT Quay 

Area QC Vessel 
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YC deployment, IT allocation to QCs, and IT hiring plans.  Henesey (2006) reviewed 

studies on strategic, tactical, and operational level problems in a container terminal.  

Vacca et al. (2007) addressed five types of decision problems which include berth 

allocation, QC scheduling, yard operations, transfer operation, and vessel stowage 

planning.  This dissertation studies decision problems concerned with the three primary 

container handling equipment types in a marine terminal: QCs, YCs, and YTs.  The 

operations of the container handling equipment and the available literature that study 

their operations individually or jointly are presented in the following sections.   

 

2.4 QUAY CRANE SCHEDULING PROBLEM 

QCs load and unload containers to/from the container vessel and could be moved 

from one berth to another.  QCs share a rail track and therefore, they cannot cross over 

one another.  For safety, QCs are kept at a safe distance from each other.  The safety 

distance is called safety margin and is typically one ship bay long.  Figure 2.4 shows a 

QC which is unloading the containers from the vessel on the trucks to be moved to the 

storage area.   

Here some studies on QC scheduling problem (QCSP) are reviewed.  Daganzo 

(1989) addressed static QC scheduling problem assuming that only one crane can work 

on hold of a vessel at a time.  The author aims on minimizing the vessel’s aggregate cost 

of delay and develops exact and approximate solution techniques to solve the scheduling 

problem.  Peterkofsky and Daganzo (1990), in a related study, proposed a branch and 

bound solution approach for the QCSP.  Both of these studies, assumed one task per ship-

bay and the interference between the QCs is not considered.   
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Figure 2.4 A typical QC. (Murty et al, 2005) 
 

Bose et al. (2000) proposed evolutionary algorithms for optimizing the 

productivity of cranes.  Kim and Park (2004) studied the QCSP with multiple tasks in a 

ship-bay and took into account crane interference and precedence relations among tasks.  

They proposed and compared a branch and bound based method and a heuristic algorithm 

for solving the model.  Ng and Mak (2006) proposed a method that decomposes the 

QCSP into smaller sub-problems and partitions the vessel into a set of non-overlapping 

zones.  Moccia et al. (2006) formulated the QCSP as a vehicle routing problem 

considering the precedence relationships between vertices.  They proposed a branch and 

cut algorithm for tackling large size problems.  Sammarra et al. (2007) developed a 

model considering the precedence and non-simultaneity constraints between tasks.  They 

proposed a tabu search heuristic for solving the problem and compared it with a branch 

and cut algorithm and a greedy randomized adaptive search procedure.  Lee et al. (2006) 

illustrated that the QCSP with crane interference is NP-hard and therefore proposed a 

Quay Crane 

Yard Truck 
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genetic algorithm to solve the mixed-integer program.  Tavakoli et al. (2009) extended 

Kim and Park’s model to solve the QC assignment problem and scheduling problem 

jointly.  Bierwirth and Meisel (2009) revised the interference constraints and proposed a 

heuristic based on branch and bound algorithm to solve the QC scheduling problem.  

Based on the growing number of studies on the QCSP with different models and solution 

methods, Meisel and Bierwirth (2011) proposed a unified approach for evaluating the 

performance of these studies.   

As shown by Bierwirth and Meisel (2009) solution approaches that only search 

for unidirectional schedules cannot guarantee an optimal solution for problems with 

container groups.  Studies on the QCSP have traditionally focused on addressing 

constraints such as non-crossing of QCs (e.g. Kim and Park 2004 and Lee et al, 2008), 

safety margin between adjacent QCs (e.g. Bierwirth and Meisel, 2009), precedence 

relationships among tasks (e.g. Bierwirth and Meisel, 2009 and Kim and Park, 2004), and 

QC travel time between bays (e.g. Bierwirth and Meisel, 2009; Kim and Park, 2004; Ng 

and Mak, 2006).  Consideration of QC ready times and withdrawal times has only been 

addressed recently.  Many papers have examined the berth allocation problem (e.g. 

Golias et al, 2009, Golias 2011, Golias et al, 2011) or berth allocation and QC assignment 

problem (Meisel and Bierwirth, 2006 and Chang et al, 2010) but the effect of the berth 

and QC assignment on QC scheduling (QC time window) was  first presented by Meisel.  

He developed a QCSPTW mathematical model and solution approach (Meisel, 2011).  

His solution methodology relied on unidirectional scheduling approach previously 

proposed for solving the QCSP.  In the work by Legato et al. (2011), the authors solved 

the QCSPTW that also considered the non-uniform QC productivity rate.  They proposed 
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a solution approach based on the unidirectional scheduling and Time Petri Net.  In 

another work by Monaco and Sammarra (2011), the authors considered soft time 

windows along with spatial limits on cranes (i.e., some QCs have limited range within the 

berth).  Their proposed tabu search metaheuristic also relied on unidirectional movement 

of the quay cranes that was evaluated with a maximum of 4 quay cranes on a single 

vessel.  

Although the non-unidirectionality in crane work schedules (each QC is allowed 

to move in different directions, independent of one another), is considered in the 

mathematical formulation of previous studies, the proposed solution approaches do not 

support this type of QC movement and is restricted to unidirectional schedules.  As 

shown by the relation below, the optimal objective function value of the QCSP is less 

than or equal to that of the NUQCSP (non-unidirectional QC scheduling problem) and 

the NUQCSP’s objective function value in turn is less than that of the UQCSP 

(unidirectional quay crane scheduling problem).  

Z*(QCSP) <= Z*(QCSPNU) <= Z*(QCSPU) 

 

2.5 YARD CRANE SCHEDULING PROBLEM  

YCs stack and retrieve the import and export containers to/from the yard blocks.  

YCs also move the containers in the blocks.  One important decision in marine terminals 

is to determine how many YCs need to work in each block and when to move from one 

block to another.  Such decisions would affect the turn time of vessels and the waiting 

times of QCs and YTs (Rashidi Tsang, 2006).  Figure 2.5 shows a rubber tyred gantry 

crane (RTGC).  RTGC sits across the width of a container block with seven rows of 
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container space between its legs.  Six rows are used for storing the containers and the 

seventh will be used for truck passing.  Each row consists of 26 stacks of TEUs which are 

stored lengthwise side by side.  For storing FEUs, the number of stacks will be decreased 

to 13 (Murty et al, 2005).  

 

 

Figure 2.5 Rubber tyred Gantry crane. (Murty et al, 2005) 
 

Efficiency of a container terminal is highly affected by the yard operations and 

therefore, YC scheduling has been studied in several researches.  Zhang et al. (2002) 

studied the dynamic deployment of RTGCs in order to minimize the total delayed 

workload in the yard.  They proposed lagrangian relaxation as a solution approach.  Kim 

and Kim (2002) developed a cost model to calculate the optimal storage space and the 

number of YCs for handling inbound containers.  Ng and Mak (2005) studied scheduling 

of a single YC.  They aimed on minimizing the sum of the task waiting times and defined 

tasks as loading and unloading operations with different ready times.  In 2005, Ng 

extended the problem to multiple YCs and proposed a two-phase heuristic for solving it.  
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In another work, Jung and Kim (2006) extended the YC scheduling problem of single YC 

to multiple YCs working on a block, considering non-crossing constraints.  They aimed 

on minimizing the makespan of the loading operations.  Lee et al. (2007) studied the 

scheduling of two YCs serving one QC at two different container blocks, and aimed on 

minimizing the total transfer time in the stack area.  Petering and Murty (2009) developed 

a discrete simulation model and investigated the effect of YCs deployment among blocks 

on the overall performance of the terminal.  In 2010 Huynh and Vidal developed an 

agent-based approach to schedule YCs, with focus on assessing the impact of different 

crane service strategies on drayage operations.  They modeled the cranes as utility 

maximizing agents, and introduced a set of utility functions to determine the order in 

which individual containers are handled.  Wenkai et al. (2012) developed an efficient 

continuous time mixed integer linear programming model for YC scheduling.  Their 

model considered realistic operational constraints like multiple inter-crane interference, 

fixed YC separation distances, and simultaneous container storage/retrievals.  They 

proposed a heuristic and a rolling-horizon algorithm for solving the model.  Gharehgozli 

et al. (2014) studied sequencing container storage and retrieval requests in a container 

terminal.  They minimized the total travel time of an YC to handle requests in a block.  

The authors developed a continuous time integer model and proposed a two-phase 

solution method to solve the problem. 

 

2.6 YARD TRUCK SCHEDULING PROBLEM 

Inbound containers are transported from quay side area to storage area and 

outbound containers are transported from storage area to quay side area.  The equipments 

http://www.sciencedirect.com/science/article/pii/S0925527311005366
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that perform the transfer operations include: ITs or YT, straddle carriers (SCs), automated 

guided vehicles (AGVs) and automated lifting vehicles (ALVs).  SCs are able to lift 

containers from the storage yard without YC assistance.  Thus SCs can both transfer and 

stack containers.  AGVs and YTs cannot lift the containers.  AGVs and ALVs are usually 

deployed at automated container terminals, and can travel along a predefined route 

without a driver.  ALVs in comparison with AGVs are capable of lifting a container from 

a buffer area without crane assistance.  Though AGVs and ALVs offer high mobility, and 

lower labor cost, due to higher initial capital investment they are not preferable in marine 

terminals with low labor costs (Vis and de Koster, 2003).  Current dissertation studies the 

scheduling of YTs.   

YTs transport the containers between the QCs and YCs.  In a marine terminal, 

there will be several vehicles to carry containers between the yard area and quay area or 

vice versa.  The scheduling and routing of these vehicles is important for minimizing the 

container transportation costs and the waiting times of the QCs and YCs.   

The YT operations have been studied extensively in the recent years.  Meer 

(2000) studied the control of guided vehicles in container terminals and examined 

different dispatching rules under different environments.  Bish et al. (2001) studied the 

problem of dispatching vehicles in combination with space allocation for containers in 

storage area.  Their objective was to minimize the total time to unload all containers from 

the vessel.  They showed that the problem is NP-hard and a heuristic method is proposed 

to solve it.  In 2002, Huang and Hsu developed two integer programs for optimizing the 

dispatching of yard vehicles.  They proposed two heuristic algorithms and a lagrangean 

relaxation to solve the models.  Bish (2003) studied the truck dispatching problem in 
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order to minimize the vessel turn time for a set of vessels.  In a more recent work, Bish et 

al. (2005) proposed a heuristic for solving the vehicle dispatching problem in terminals 

for one and multiple QCs.  Their proposed solution approach was able to find the optimal 

solution for one QC and near-optimal solution for multiple QCs.  Ng et al. (2007) 

proposed the scheduling of YTs with sequence-dependent processing times.  Some papers 

have focused on scheduling the handling equipment in automated container terminals and 

have studied the automated transporters like AVGs and ALVs.  Kim and Bae (2004) 

developed a look-ahead dispatching method to minimize the AGV’s travel time and QC’s 

waiting time.  Nguyen and Kim (2009) proposed a heuristic algorithm considering the 

ALV dispatching problem.   

 

2.7 INTEGRATED QUAY CRANE, YARD TRUCK AND YARD CRANE 

SCHEDULING PROBLEM 

So far we have reviewed the available literature on QC, YT and YC operations in 

a marine container terminal.  This section covers the available literatures that consider 

QC, YT, and YC operations jointly.  Studying two or more terminal operations jointly 

has been the focus of recent year’s papers.   

Meersmans (2002) developed models for integrated scheduling of QCs, AGVs, 

and automated stacking crane (ASCs) in an automated container terminal.  The author 

proposed a branch and bound based algorithm and a heuristic beam search algorithm to 

solve the problem.  Vidovic and Kim (2006) proposed two approaches to estimate the 

productivity of three-stage material handling systems: one continuous Markov chain 

model and two approximated mathematical models.  Their proposed approximated 
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models are based on probability theory.  Chen et al. (2007) proposed a model for 

integrated QC, YT and YC scheduling in a container terminal.  They proposed a tabu 

search algorithm for solving the model and formulated the problem as a hybrid flow shop 

scheduling problem with precedence and blocking constraints (HFSS-B).  Zeng and Yang 

(2009) developed an HFSS-based model for scheduling QCs, YTs and YCs jointly.  They 

proposed an integrated simulation and optimization method for solving the problem.  

Jinxin et al. (2010) modeled the operations of a QC and YTs jointly for unloading 

containers.  Their mathematical model treated this problem as a two-step flow shop 

problem with a single QC working on the vessel.  No precedence relationship between 

the tasks was considered in their problem.  The authors used a ruled based heuristic and a 

GA to solve the problem.  Lau and Zhao (2008) developed a mixed integer programming 

model for the integrated scheduling of QCs, AGVs and YCs.  They proposed a multi-

layer genetic algorithm to solve the model.  Chen et al. (2013) formulated an integrated 

model for scheduling all three equipments (QCs, YTs, and YCs) as a constraint 

programming model.  They proposed a three-stage algorithm to solve the model.   

 

2.8. CONTRIBUTION TO LITERATURE 

The container terminal operations are attracting more attention and the number of 

publications appearing in the literature is growing.  Researchers develop mathematical 

models and propose different solution approaches to tackle the marine container terminal 

decision problems.  It is anticipated that this research contributes to the area of container 

terminal operations on three critical problems: the QC, YT and YC scheduling.  

Optimizations of resource allocation, minimization of vessel turn time, and enhancement 
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of the container terminal productivity are the main objectives of these problems.  The 

contributions of current dissertation are discussed in the following sections. 

 

QUAY CRANE SCHEDULING PROBLEM 

The contributions of this study to literature are: enhancing the efficiency of GA 

available in MATLAB by 1) using an initial solution based on the S-LOAD rule 

developed by Sammarra et al. (2007) 2) presenting a new approach for defining the 

chromosomes representation to reduce the number of decision variables 3) using new 

procedures for calculating tighter lower and upper bounds for the decision variables.  The 

benefits of using MATLAB GA in this study include reducing development time, 

eliminating GA coding errors, and using a platform that others could easily reproduce 

results and extend methodologies. 

 

A GENETIC ALGORITHM HEURISTIC FOR SOLVING THE QUAY CRANE 

SCHEDULING PROBLEM WITH TIME WINDOWS 

The contributions of this study to literature are: 1) allowing non-unidirectional 

movements of the QCs (i.e. QCs can move in different directions), 2) Allowing QCs to 

change their directions in certain situations to yield more realistic and flexible schedules, 

3) developing a GA that can provide high quality solutions in a faster time for medium 

and large-sized instances, and 4) improving the solution quality for instances with 

fragmented time windows.   
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INTEGRATED QUAY CRANE AND YARD TRUCK SCHEDULING FOR 

UNLOADING INBOUND CONTAINERS 

The contributions of this study to literature are: 1) developing a new hybrid flow 

shop model for scheduling multiple QCs and YTs jointly, 2) defining task (a group of 

containers) as decision variables for the QC scheduling stage and reducing the 

computation time, 3) considering QC interference and safety margin constraints in the 

model, 4) developing and comparing an integrated solution against a sequential approach, 

and 5) developing a GA that can solve the integrated model within a reasonable time. 

 

ROBUST SCHEDULING OF TERMINAL CONTAINER HANDLING EQUIPMENT  

The contributions of this study to literature are: 1) developing a robust integrated 

model to schedule QCs, YTs and YCs jointly while considering non-deterministic nature 

of container processing times, 2) formulating the robust integrated model based on a 

recent robust optimization approach: p-robust, 3) considering both assignment of inbound 

containers to the equipment and the processing sequence of the containers in the 

integrated model, and 4) developing a GA for solving the integrated robust problem 

which is capable of minimizing the makespan of the nominal scenario while bounding the 

makespan of all possible scenarios. 
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CHAPTER 3 

 

AN EFFICIENT GENETIC ALGORITHM FOR SOLVING THE QUAY CRANE 

SCHEDULING PROBLEM1 

ABSTRACT 

This study addresses the quay crane scheduling problem (QCSP), which has been 

shown to be NP-complete (Lee et al. 2008).  For this reason, a number of studies have 

proposed the use of genetic algorithm (GA) as the means to obtain the solution in 

reasonable time. This study extends the research in this area by utilizing the GA that is 

available in the latest version of Global Optimization Toolbox in MATLAB 7.13 to 

facilitate development. It aims to improve the efficiency of the GA search by (1) using an 

initial solution based on the S-LOAD rule developed by Sammarra at al. (2007), (2) using 

a new approach for defining the chromosomes (i.e. solution representation) to reduce the 

number of decision variables, and (3) using new procedures for calculating tighter lower 

and upper bounds for the decision variables.  The effectiveness of the developed GA is 

tested using several benchmark instances proposed by Meisel and Bierwirth (2011).  

Compared to the current best known solutions, experimental results show that the 

proposed GA is capable of finding the optimal or near-optimal solution in significantly 

shorter time for larger problems. 

                                                           
1 Kaveshgar N., N. Huynh and S. Khaleghi Rahimian. 2012. Expert Systems with Applications. 39:13108–

13117. Reprinted here with permission of publisher. 
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3.1 INTRODUCTION 

Container terminals operate under several performance goals.  The primary 

objective is to achieve rapid flow of containers at a minimum cost.  As such, the time to 

load/unload a vessel has generally been the terminal’s highest priority; the time spent by 

a vessel at berth is known as vessel turn time.  This study deals with the quay crane 

scheduling problem (QCSP).  Figure 3.1 shows a picture of quay cranes in position to 

load and unload containers to and from the vessel.  For the QCSP, it is assumed that the 

assignment of cranes to the vessel has already been made; that is, how many cranes 

should be allocated to each vessel. 

 

 

Figure 3.1 Illustration of quay crane scheduling problem. 
 

Thus, the objective of the QCSP is to determine the task sequence for each quay 

crane so that the vessel turn time is minimized.  As shown in Figure 3.1, a vessel is 

divided longitudinally into multiple bays in which the containers are stored.  The vessel 

could have 10–50 bays.  Containers stored in these bays are typically grouped together by 

their criteria (e.g., size, weight, origin port, destination port). A cluster is a collection of 
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adjacent slots on the vessel which containers of the same group are stored in.  As 

discussed in Meisel and Bierwirth (2011), there are three different classes of the QCSP 

problem: QCSP with container groups (highest complexity), QCSP with complete bays, 

and QCSP with bay areas (lowest complexity).  In this study, a ‘‘task’’ is either a loading 

or unloading operation for a cluster, and therefore, the problem discussed in this study is 

from the class of QCSP with container groups which has the highest complexity among 

three classes. 

Loading and unloading operations of containers follow a logical precedence 

relationship. Specifically, the unloading operation precedes the loading for the tasks 

located in the same ship bay.  Also, for the tasks in the same ship bay the unloading 

operation must start first with tasks on the deck before preceding to the tasks in the hold 

(below deck).  Conversely, for the loading operation of tasks in the same ship bay, the 

tasks in the hold must be loaded first before those tasks on the deck.  For the QCSP, it is 

typically assumed that once a quay crane starts to load/unload containers to/ from the 

cluster, it will continue to do so until all slots in the cluster are loaded/emptied.  For 

safety reasons, quay cranes are typically kept at a safe distance from one another.  In this 

study, a one bay safety margin is considered.  Quay cranes cannot cross over one another 

since they share the same track. Crane interference is accounted for in this study. 

The objective of this study is to apply GA to solve the QCSP which has been 

demonstrated to be effective in solving the QCSP (Lee et al. 2006) as well as berth 

scheduling (e.g., Golias et al. 2009), yard crane scheduling (e.g.,  He et al. 2010), and 

yard truck scheduling (e.g., Ng et al. 2007).  The specific aim is to obtain solutions faster 

than currently known approaches for larger problems using established bench mark data. 
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It is accomplished using MATLAB GA combined with (1) a heuristic for generating an 

initial solution based on the S- LOAD rule developed by Sammarra et al. (2007), (2) a 

new method for defining the chromosome to reduce the number of  decision variables, 

and (3) new procedures for  generating tighter lower bounds and upper bounds for the 

decision variables.   

 

3.2 MATHEMATICAL FORMULATION OF THE QCSP 

The mathematical formulation used for the QCSP in this study are based on the 

one developed by Kim and Park (2004).  Modified versions of this formulation are 

presented in Moccia et al. (2006), Sammarra et al. (2007) and Bierwirth and Meisel 

(2009). 

Notations 

Indices: 

i, j = Indices of tasks to  be  performed which is an increasing order according to their 

locations on the ship-bay 

k = QC number which are in an increasing order according to their locations on the ship-

bay 

Problem data: 

pi = ith Task processing time 

n = Total number of tasks 

rk = Earliest available time of processor k (QC here) 

li = ith Task location (relative ship-bay number) 

lc0
k = Initial location of quay crane k (relative ship-bay number) 

lcT
k = final location of quay crane k (relative ship-bay number) 
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t = Travelling time between two adjacent bays 

M = A sufficiently large positive constant 

α1 and α2 = weight for makespan and total completion time respectively 

 

Set of indices 

Ω = Set of all tasks 

Ψ= When (i, j) e W then (i, j) cannot be performed simultaneously. 

Φ = Set of task with precedence relationship.  When (i, j) Φ(i,j)∈  then i must precede j. 

 

Decision variables: 





=
Otherwise0

 taskafteryimmediateltask performsQC Iff1 ijk
xk

ij

 





=
Otherwise0

taskfirstitsastask performsQC Iff1
0

jk
xk

j

 





=
Otherwise0

taskfinalitsastask performsQC Iff1 jk
xk

iT  

=kY Completion time QC k 

=iD Completion time of task i  





=
Otherwise0

  task of completion thethanlater startseperformanctask Iff1 ij
zij  

W=Makespan  

ij ll − =  travel time of QC k from ith task to jth is assumed to be relative to 

 the ship bay numbers.  
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The objective function (3.1) minimizes the summation of makespan and 

completion time of each quay crane.  Since the goal is to minimize the vessel turn time, 

1α  is set to be much greater than 2α .  Constraint (3.2) calculates the makespan (W ).  

Constraint (3.3) forces each QC to choose one task as its first task after its initial state.  

Constraint (3.4) forces each QC to choose one task as its last and final state.  Constraint 

(3.5) makes sure that each task is handled exactly by one QC.  Constraint (3.6) is for 

guaranteeing a well-defined sequence for tasks.  Constraint (3.7) defines the property of 

the completion time of each task and also eliminates the sub-tours.  Assuming task j  

being immediately performed by QC k after task i , constraint (3.7) would avoid a sub-

tour by forcing the completion time of task j  to be at most equal to the completion time 

of task i  plus the performance time of task j  and the time required to travel from task i  

to task j .  Constraint (3.8) forces task i to be completed before task j . Constraint (3.9) 

defines the property of ijZ  when needed, such that 1=ijZ  when the performance of task 

j starts after the performance of task i  is completed; and 0 otherwise.  Constraint (3.10) 

ensures that the pair of jobs that are members of the set Ψ will not be handled 

simultaneously.  Constraint (3.11) eliminates the interference among QCs.  Constraint 

(3.12) defines the property of kY , the completion time of each QC.  Constraint (3.13) 

controls the quay cranes operation starting time.  It ensures that completion time of the 

first task by each QC would be at least equal to the time required to perform the task plus 

the time required to travel from the initial location of the QC to that task.  
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3.3 DEVELOPED GA APPROACH  

Genetic algorithm (GA) is a search heuristic from the class of evolutionary 

algorithms that simulates the process of natural evolution such as inheritance, mutation, 

selection, and crossover for finding the solution for optimization problems.  In this study, 

the GA provided in the MATLAB 2011b Global Optimization Toolbox is used which is 

capable of solving the mixed integer nonlinear programming.  The attractiveness of using 

the commercial software is that it facilitates development.  MATLAB provides a 

convenient programming environment that aids algorithm development. 

The developed methodology using GA is illustrated in Figure 3.2.  The procedure 

starts with getting the input data which consists of task processing time, location of each 

task, and quay cranes’ initial positions.  Then the upper bound and lower bound for the 

number of tasks that can be assigned to each quay crane and the bounds for the task 

number that can be processed by each QC is calculated (this procedure is explained in 

detail in section 3.3.1).  To reduce the computation time an initial solution is utilized 

based on the S-LOAD rule proposed by Sammarra et al. (2007).  The S-Load rule would 

divide the workload almost equally among the cranes.  The initial solution would be 

considered as one of the individuals of the initial population and the remaining ones are 

generated randomly based on the specified lower and upper bounds (step 1 of Figure 3.2).  

Next, step 2 of Figure 3.2, the objective function value for every individual is calculated 

and stored for creating the next generation.  At each iteration, until the stopping criteria 

are met (step 3), GA would create the next generation (step 4) and repeat the process 

(starting at step 2).   
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Figure 3.2 Flowchart of methodology using GA. 
 

The four key GA steps are explained in further detail below. 

1. Create a random initial population (Step 1 in Figure 3.2) 

The GA procedure starts with the creation of a random initial population.  The 

population size is a value that could be set in the Population options.  In addition, this 

study uses the S-LOAD rule to generate an individual as part of the initial population to 

facilitate the search.  
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2. Evaluation of the objective function (Step 2 in Figure 3.2) 

In order to use GA to obtain the optimal or near-optimal solution, the objective 

function must be defined in MATLAB.  This function would accept input data and return 

a scalar which is the objective function value.  The chromosome representation and 

evaluation of the objective function play a significant role in our developed method.  

These two aspects are explained in detail in section 3.4.1. 

3. Stopping criteria (Step 3 in Figure 3.2) 

A number of options could be used for the stopping criteria: Generations, Stall 

generations, Time limit, Fitness limit, Stall time limit and Function Tolerance.  They can 

be specified in the Optimization Tool or in the GA options.  In this study the following 

stopping criteria are used: 

1- Generations — the number of generations reaches the value of Generations specified 

by user. 

2- Stall generations — the weighted average change in the fitness function value over 

Stall generations is less than Function tolerance specified by user. 

3- Function Tolerance — the algorithm will stop if the cumulative change in the 

objective function is less than a predefined tolerance (1e-6) over the stall generations 

limit. . 

4. Create the Next Generation (Step 4 in Figure 3.2) 

At each step, GA uses the current population as a set of parents for creating the 

children for the next generation.  GA would select the parents that have better fitness 

values (lower objective function value in comparison with other individuals). At each 

step, three types of children are created for the next generation: 
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a) Elite children (best fitness values and will survive to the next generation) 

b) Crossover children (created by combining the genes of a pair of parents). Other 

than elite children a fraction of the population in each generation, indicated by the 

crossover fraction, is put together as the crossover children. With a crossover 

fraction of 1 all children except for the elite individuals will be considered as the 

crossover children.  On the contrary a crossover fraction of 0 would take all 

children as mutation children. When using the default crossover function in 

MATLAB (i.e. Scattered) a binary vector will be produced randomly and the 

genes of the first parent matching 1 in the binary vector and the genes form the 

second parent matching 0 in the binary vector will be selected to combine and 

create the child. The following example from MATLAB illustrates the crossover 

operation: 

If p1 = [a b c d e f g h] is parent 1 and p2 = [1 2 3 4 5 6 7 8] is parent two and v = 

[1 1 0 0 1 0 0 0] is the random binary vector, the created child will be:  

child = [a b 3 4 e 6 7 8]. 

c) Mutation children (random changes to a single parent). The mutation operation 

increases the genetic diversity and as a result GA searches a broader area.  

Mutation helps to prevent the search from stalling at a local optimum. The default 

mutation option in MATLAB is Gaussian.  A random number is selected from a 

Gaussian distribution with mean 0 and is added to each parent chromosome. The 

amount of mutation is proportional to the standard deviation of the Gaussian 

distribution and will reduce at each new generation (MATLAB user’s guide). 
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The following line of code in MATLAB will call GA and return two outputs, 

namely: x (i.e. quay cranes’ work sequence) and fga (i.e. the objective function value).  

Parameters like equality or inequality constraints that are not used in this study are set to 

[].  

[x fga] = ga(objfunc,N,[],[],[],[],LB,UB,[],intcon,options); 

In the input arguments above “objfunc” is the objective function which needs to 

get minimized, “N” represents the number of decision variables, “LB” and “UB” are the 

lower bound and upper bounds for the decision variables which are explained in section 

3.3.1.  Lastly, “options” specify the parameters, such as population size, mutation and 

crossover operations, that the GA algorithm should employ. 

 

3.3.1 CHROMOSOME REPRESENTATION 

As explained previously, GA starts with a population of individuals or solutions.  

Each solution is called a chromosome consisting of genes that represent the decision 

variables.  The total number of decision variables plays a significant role in the 

computational time; problems with more variables will require longer computation time.  

In the mathematical formulation presented in Section 3, the total number of decision 

variables for a problem size of  is as follows: 

Decision variables in QCSP: 

, , , , , , . 
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where is the number of different combinations of indices for each decision 

variable.  Equation (3.16) shows an example calculation of  for the first decision 

variable . 

 (3.16) 

For example, the total number of variables for a problem with 9 tasks and 2 quay 

cranes is 291 (162+18+18+81+9+2+1), consisting of 279 binary and 12 continuous 

decision variables.   

In previous work by Lee et al. (2006), the authors defined a chromosome as a 

sequence of all possible tasks to be completed, without explicit assignment of tasks to 

quay cranes.  In another study by Chung and Choy (2012), the authors defined a 

chromosome to have two parts.  In the first part, from left to right, genes represent the 

tasks and their performance sequence whereas in the second part, they represent the quay 

cranes assigned to each task of the first part.  Therefore, with their method, the total 

number of decision variables is 2n where n is the total number of tasks. 

Before introducing our chromosome definition, it is necessary to point out that in 

this study a quay crane is allowed to move in any direction, independent of the direction 

of other quay cranes.  However, once it moves in one direction it cannot reverse 

direction.  This concept is referred to as independent unidirectional in the literature in 

regard to the quay crane movement.  It should be noted that this approach is more general 

and robust than the one proposed by Meisel and Birwirth (2009) where all cranes are 

constrained to move in only one direction (unidirectional). 

In this study, as shown in equation (3.17), we defined a chromosome to have three 

parts.  The first part represents the sequence of tasks assigned to the quay cranes, the 

δ

δ

k
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mnnX k
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second part represents the number of tasks assigned to each quay crane, and the last part 

represents the direction of each quay crane which is essential for creating solutions with 

independent unidirectional movements of the QCs. 

 (3.18) 

The first n elements (X) show the sequence of tasks to be done. The elements 

denoted by K represent the total number of tasks that are assigned to each quay crane, and 

the last m elements denote the direction of each quay crane. H can only take 1 or 2 as its 

value.  H equals to 1 means ascending (left to right) direction of the QC, and H equals to 

2 means descending direction. Since m is much less than n this method of defining the 

chromosome reduces the total number of decision variables significantly.  The total 

number of decision variables will be: n+2×m 

Figure 3.3 shows an example of a chromosome encoding.  This chromosome 

represents a QCSP with 6 tasks and 2 quay cranes.  As indicated in the first part of the 

chromosome, there are six tasks (numbered 1 to 6).  Tasks 1, 2 and 3 are assigned to the 

first QC and the remaining tasks (4, 5, and 6) are assigned to the second QC. The second 

part of the chromosome indicates that each QC is assigned three tasks, and the third part 

of the chromosome indicates that both QC will move in the same direction (left to right).   

 

 

 

QC number Task sequence 
1 1,2,3 
2 4,5,6 

 
Figure 3.3 Chromosome Representations. 

[ ]mmn HHHKKKXXXS ...... 212121=

Part one Part Two 

3 4 1 5 6 2 3 3 1 1 

Part Three 
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In addition to using the above approach to reduce the number of decision 

variables, a lower and upper bound is defined for the number of tasks assigned to a quay 

crane (second part of the chromosome).  The lower bound is set to one task for each quay 

crane and the upper bound is calculated according to the following procedure.  

Step 1. Arrange the performance time of tasks in an ascending order and name the set Q 

Step 2. Set ,  

Step 3. Set  (3.18) 

Step 4. Arrange tasks in descending order (set G) 

Step 5. Set  (3.19) 

If  stop and set upper limit=i; otherwise set i=i-1 and go to step 3. 

The above procedure will guarantee that the completion time of the quay crane 

assigned with the maximum number of tasks (with lowest processing time among all the 

tasks) will not exceed the completion time of the quay crane assigned with the highest 

work load.   

Moreover, a lower limit and an upper limit are developed for the task numbers 

(first part of the chromosome) which would confine the tasks that could be done by a 

specific quay crane.  This could be done from knowing the locations of the tasks and 

quay cranes and also the fact that QCs share the same track and cannot cross one another.  

For example, when two or more QCs are working on a ship, the tasks located on the first 

ship bay (left most tasks) could only be performed by the first quay crane (the one 

positioned on the left).  The lower limit is set as follows: 
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For the first (n-(m-1)) genes of the chromosome the lower bound is 1.  For the 

next (m-1) remaining genes the lower limit is 2, 4, 6,…, K.  The skip in number is due to 

the one bay safety margin between the quay cranes.   

For the first (m-1) genes, the upper limit is set to (n-K), (n-K+2), (n-K+4),…and 

for the remaining genes the upper limit is set to the total number of tasks.  

 

3.3.2 CHROMOSOME VALIDATION 

Before evaluating the objective function, the two important criteria that need to be 

satisfied are crane interference and precedence relationship of tasks.  The tasks that are 

close to each other (i.e. violating the one bay safety margin between the quay cranes) are 

treated as crane interference.  In Kim and Park (2004), during the first phase of the 

proposed heuristic the tasks that violate these constraints are excluded from the set of 

feasible tasks for the next operation.  In Lee et al. (2006), which used a GA, if the 

solution does not satisfy the non-interference constraint then the fitness value of the 

chromosome is set to zero. 

In this study, chromosomes violating the interference constraints are discarded by 

setting a high fitness value to them.  In the cases that the precedence relationship between 

the tasks is violated, the tasks are swapped.  For example, if task 1 should precede task 2 

but in the created chromosome task 2 is performed before task 1, the tasks will be 

swapped and the chromosome will be adjusted according to the precedence relationship 

between the tasks. 

The solutions obtained from the GA could be invalid for QCSP.  That is, there 

could be two genes in the first part of the chromosome with identical values.  Thus, a 
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validation procedure is needed to ensure that the genes representing the task number in 

the first part of the chromosome have unique values and that the sum of the task numbers 

assigned to each quay crane is equal to the total number of tasks.  This validation 

procedure was coded by the authors in MATLAB.  

 

3.3.3 EVALUATING THE GA OBJECTIVE FUNCTION 

The objective function value of a solution is dependent on the set of tasks 

assigned to each quay crane and the number of tasks that are going to be performed by 

each crane as well as the crane direction (based on the task location).  For each 

chromosome, the objective function will be evaluated as follows: 

When starting a new task a QC would check the adjacent tasks on the left and 

right.  If there is a starting time for that task and another QC has started performing it, 

current QC would check the finishing time of that task.  If the task is not completed yet, it 

has to wait; otherwise it will start that task right away.  The quay cranes’ destinations and 

completion time after performing each task is calculated as follows. 

Determination of the QC’s destinations 

The destination is determined for each quay crane after it performs a task in its 

set.  There are four possibilities for each quay crane: (1) quay crane travels to its assigned 

task and completes that task, (2) quay crane waits to avoid a collision and then traverses 

to its next task, (3) quay crane remains idle and will stay at its current position, and (4) 

quay crane remains idle will move to avoid collision with other quay cranes.  Each of 

these possibilities would determine a quay crane’s displacement and as a result the 

required travel time.   
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Evaluating each task’s completion time ( ) 

This procedure is critical since there could be a displacement of a quay crane 

according to four possibilities noted above.  Therefore, the required time for a quay crane 

to travel has to be added to its completion time.  Consider a problem illustrated in Figure 

3.4.   

 

Figure 3.4 Illustration of tasks, bays and QC location for evaluating the QC completion 
time. 

 

Three quay cranes and 10 tasks are shown in this figure.  Each task is located on a 

bay with the same number and there are 10 bays.  Consider a situation that tasks 1, 3 and 

6 are performed by QCs 1, 2 and 3 respectively and QCs 1 and 3 next tasks are going to 

be tasks 2, and 7 and no task is assigned to QC2.  But if 1C  is less than 2C  it is not 

possible to perform task 2 until task 3 is finished.  Therefore, QC1 would start task 2 after 

2C  time units have elapsed.  Moreover, after performing task 3, QC2 has to be displaced 

and therefore, its final location is not the same as its last position ( 4l instead of 3l ).  The 

completion time of the first QC is presented in Equation (3.20): 

12221 llPCC −++=  (3.20) 

Note that the objective function algorithm would consider the location of all the 

QCs to check for the possible interference between adjacent ones.  Therefore, if there is a 

QC further ahead which blocks QC2 from moving to the right (QC3), and 32 CC < , both 

kC

QC3 

 

QC2 

 

2 3 4 5 6 7 8 1 9 10 

QC1 
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QC2 and QC1 have to wait.  The last step in the algorithm is to compute the objective 

function (Equation 3.1) which is the maximum completion time among all the QCs.  

 

3.4 EXPERIMENTAL DESIGN 

To evaluate the effectiveness of the developed GA methodology, the experiments 

used benchmark data provided by Meisel & Bierwirth (2011).  In these benchmark sets, 

the processing time, the initial location of each quay crane and the location of each task 

are provided, as well as the precedence relationships between the tasks.  No non-

simultaneous tasks are specified in these benchmark instances.  The travel time between 

each ship bay is 1 time unit and the Table 3.1 Input Data for Set A: Instance 1quay crane 

ready time is zero.  In this study, sets A and F (as named by Meisel and Bierwirth) are 

used, with a safety margin of one ship bay.  Table 3.1 shows an example of the data 

instance provided by Meisel and Bierwirth.  

 

Table 3.1 Input Data for Set A: Instance 1 (Meisel & Bierwirth, 2011). 
Task number 1 2 3 4 5 6 7 8 9 10 

processing times (Pi) 131 190 8 69 8 2 200 192 99 101 
bay locations (li) 1 2 3 4 4 6 7 8 10 10 

precedence relations Φ = [(4,  5), (9, 10)] 

Number of bays 10 
QC ready times rk = [0,0] 

Initial QC location lc0
k = [(1,3)] 

 

In set A, all the instances have two quay cranes, and the number of tasks is varied 

from 10 to 40 which are located across 10 bays. In set F, all the instances have 50 tasks, 

located across 15 bays, and the number of quay cranes is varied from 2 to 6. 
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As mentioned in Section 3.4, the “options” specify the parameters for the GA 

algorithm, such as population size, mutation and crossover operations.  The following 

shows the options settings used in this study. 

options  = 

gaoptimset('display','iter','Generations',nG,'PopulationSize',nP,'StallGenLimit',nS,'TolFun'

,eps,'CrossoverFraction',.9,'InitialPopulation',P0); 

In all experiments, the stall generations (nS) are set to 200, and the Function 

Tolerance (eps) is set to 2.22x10e-16.  The population size (nP) is set to 50 individuals 

and number of generations (nG) is set to 100 for set A and 200 for set F.  The initial 

guess is an individual created using the S-LOAD rule from the initial population (P0).  

The experiments were conducted on a PC with 8 GB of RAM and 3.40 GHz processor. 

 

3.5 RESULTS AND DISSCUSSION 

Tables 3.2 to 3.4 compare the performance of the developed GA with the best-

known solutions as reported in Meisel & Bierwirth (2011).  The average gap over all 

instances is equal to 0.6%. Table 3.2 shows the maximum observed gap and the 

computation time for small to medium size problems (10 to 25 tasks) whereas Table 3.3 

shows the results for medium to large size problems (30 to 40 tasks).  As shown in Tables 

3.2 and 3.3, the gap ranges from 0 to 1.6% for set A and the developed GA is able to find 

near optimal solutions in a reasonable amount of time.  Table 3.4 presents the GA 

performance for set F.  The gap is less than 2% except for the group of instances with 50 

tasks 4 quay cranes.  Set F shows that the gap grows as the number of quay cranes 

increases which is consistent with the results obtained by Lee et al. (2006).  This is due to 
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the higher probability of crane interference, which makes it harder for the GA to find the 

best solution.  The computation time of the GA for larger problems is very promising.  As 

it can be seen in Table 3.4, the GA computation time is about 20 times shorter than those 

reported in Meisel & Bierwirth (2011).  It should be noted that the computation time 

comparison is not entirely accurate because of different computing hardware and 

software used in these studies.  However, their relative difference and trend do tend to 

indicate that GA is more efficient in solving larger problems.  

Figures 3.5 and 3.6 provide a graphical representation of the average difference in 

the computation time and average gap between the current best solution and the 

developed GA solution.  The average gap for set A is 0.57% and except for the last set 

with 40 tasks there is no noticeable trend in the gap.  The average gap reaches 2.84% for 

set F and the gap is monotonically increasing.  GA offers no improvement in computation 

time for set A and the difference increases as the number of tasks increases.  However, 

for set F (with more than two quay cranes working on the vessel) the improvement is 

noticeable (1214 seconds for the largest instance).  Overall, the developed GA approach 

is capable of solving larger problems in a reasonable time in comparison with Kim and 

Park (2004) and Bierwirth and Meisel (2009) studies. The quality of the results is 

excellent for small to medium size problems and for larger problems the quality is 

acceptable.  These results further corroborate that GA is suitable for solving the QCSP.  

Also, it validates the suitability of MATLAB GA for future studies. 
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Table 3.2 Comparison of GA Performance with current best solution (Set A 10 to 25 tasks). 
Experiment 

no. 
Size 

(cranes×tasks) 
Bierwirth & Meisel (2009) Developed GA Gap* (%) 

Obj. value Average Time(s) Obj. value Time(s) 
1 

2×10 

520 < 1 520 4 0.0 
2 508 < 1 508 4 0.0 
3 513 < 1 513 4 0.0 
4 510 < 1 510 4 0.0 
5 515 < 1 515 4 0.0 
6 513 < 1 513 4 0.0 
7 511 < 1 511 4 0.0 
8 513 < 1 513 4 0.0 
9 512 < 1 512 4 0.0 
10 549 < 1 549 4 0.0 
1 

2×15 
 

514 < 1 514 5 0.0 
2 507 < 1 507 5 0.0 
3 515 < 1 515 5 0.0 
4 513 < 1 516 6 0.6 
5 507 < 1 507 5 0.0 
6 508 < 1 513 5 1.0 
7 507 < 1 508 6 0.2 
8 508 < 1 513 6 1.0 
9 507 < 1 507 7 0.0 
10 513 < 1 514 6 0.2 
1 

2×20 
 

508 < 1 509 7 0.2 
2 509 < 1 514 7 1.0 
3 509 < 1 509 6 0.0 
4 509 < 1 513 7 0.8 
5 506 < 1 507 7 0.2 
6 508 < 1 508 7 0.0 
7 507 < 1 507 7 0.0 
8 510 < 1 510 6 0.0 
9 508 < 1 508 7 0.0 
10 507 < 1 511 6 0.8 
1 

2×25 
 

508 < 1 513 9 1.0 
2 507 < 1 513 8 1.2 
3 507 < 1 507 8 0.0 
4 507 < 1 507 9 0.0 
5 507 < 1 507 9 0.0 
6 507 < 1 507 8 0.0 
7 508 < 1 508 8 0.0 
8 507 < 1 507 8 0.0 
9 506 < 1 507 9 0.2 
10 506 < 1 513 8 1.4 

* Difference between the lower bound and GA objective function value in percent (GA–Lower 
bound)/lowerbound×100. 
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Table 3.3 Comparison of GA Performance with current best solution (Set A 30 to 40 
tasks). 

Experiment 
no. 

Size 
(cranes×tasks) 

Bierwirth& Meisel (2009) Developed GA Gap* 
(%) 

Obj. value Average Time(s) Obj. value Time(s) 
1 

2×30 

506 < 1 507 10 0.2 
2 508 < 1 508 10 0.0 
3 507 < 1 507 10 0.0 
4 507 < 1 507 9 0.0 
5 506 < 1 506 10 0.0 
6 506 < 1 513 9 1.4 
7 508 < 1 514 9 1.2 
8 508 < 1 508 9 0.0 
9 506 < 1 506 10 0.0 

10 506 < 1 506 10 0.0 
1 

2×35 
 

506 < 1 506 11 0.0 
2 507 < 1 507 11 0.0 
3 506 < 1 506 11 0.0 
4 507 < 1 507 10 0.0 
5 507 < 1 508 11 0.2 
6 511 < 1 511 11 0.0 
7 507 < 1 512 10 1.0 
8 506 < 1 506 11 0.0 
9 506 < 1 506 11 0.0 

10 508 < 1 513 11 1.0 
1 

2×40 
 

506 < 1 506 12 0.0 
2 506 < 1 506 12 0.0 
3 505 < 1 512 12 1.4 
4 507 < 1 507 11 0.0 
5 506 < 1 507 12 0.2 
6 507 < 1 513 11 1.2 
7 507 < 1 507 15 0.0 
8 506 < 1 514 12 1.6 
9 506 < 1 506 12 0.0 

10 507 < 1 514 11 1.4 
* Difference between the lower bound and GA objective function value in percent (GA–Lower 
bound)/lowerbound×100. 
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Table 3.4 Comparison of GA Performance with current best solution Set F (2 to 4 QCs). 
Experiment 

no. 
Size 

(cranes×tasks) 
Bierwirth& Meisel (2009) Developed GA Gap* 

(%) Obj. value Average Time(s) Obj. value Time(s) 
1 

2×50 
 

1509 11 1509 15 0.0 
2 1510 11 1524 14 0.9 
3 1510 11 1511 14 0.1 
4 1510 11 1511 15 0.1 
5 1509 11 1521 15 0.7 
6 1509 11 1510 13 0.1 
7 1511 11 1512 15 0.1 
8 1509 11 1511 14 0.1 
9 1510 11 1511 15 0.1 
10 1510 11 1510 13 0.0 
1 

3×50 
 

1007 199 1014 31 0.7 
2 1008 199 1013 31 0.5 
3 1008 199 1013 27 0.5 
4 1009 199 1015 27 0.6 
5 1007 199 1011 35 0.4 
6 1008 199 1009 30 0.1 
7 1009 199 1011 28 0.2 
8 1008 199 1009 29 0.1 
9 1012 199 1019 30 0.0 
10 1008 199 1012 29 0.4 
1 

4×50 
 

774 1248 784 33 1.3 
2 771 1248 782 34 1.4 
3 772 1248 784 28 1.6 
4 765 1248 803 32 5.0 
5 762 1248 792 34 3.9 
6 765 1248 769 35 0.5 
7 782 1248 782 28 0.0 
8 761 1248 781 31 2.6 
9 798 1248 860 35 7.8 
10 759 1248 792 47 4.3 

* Difference between the lower bound and GA objective function value in percent (GA–Lower 
bound)/lowerbound×100. 
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(a) 
 

 
(b) 

Figure 3.5 Comparison of GA performance against current best solution: a) Set A 
instances and b) Set F instances. 
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(a) 

 
(b) 

Figure 3.6 Comparison of GA computational time against current best solution: (a) Set A 
instances and (b) Set F instances. 
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3.6 CONCLUSION 

The growing importance of container terminals has stimulated many studies to 

apply operations research models to optimize processes within a seaport container 

terminal.  Among the processes within a container terminal, the QCSP has received 

considerable attention.  A number of studies have proposed the use of genetic algorithm 

(GA) to solve the QCSP.  This study contributed to this research area by utilizing the GA 

that is available in the latest version of Global Optimization Toolbox in MATLAB 7.13 

to facilitate development.  It improved the efficiency of the GA search by 1) using an 

initial solution based on the S-LOAD rule developed by Sammarra et al. (2007), 2) using 

a new approach for defining the chromosomes (i.e. solution representation) to reduce the 

number of decision variables, and 3) using new procedures for calculating tighter lower 

and upper bounds for the decision variables.  Experimental results using benchmark 

instances showed that the developed GA provide solutions in faster time for larger 

problems compared to the current best-known solutions.  An advantage of the developed 

GA methodology is that the quay cranes are not limited to unidirectional movement.  

This study validated the suitability of MATLAB GA for future studies.  In the same spirit 

taken by Meisel and Birwirth to propose benchmark instances to compare QCSP solution 

methodologies, the same can be said about the use of MATLAB GA.  That is, we would 

advocate the use of MATLAB GA in future studies so that it would be easier to compare 

the effectiveness of different proposed solution methodologies.  Other advantages of 

using MATLAB GA include reducing development time, eliminating GA coding errors, 

and using a platform that others could easily reproduce results and extend methodologies. 
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CHAPTER 4 

 

A GENETIC ALGORITHM HEURISTIC FOR SOLVING THE QUAY CRANE 

SCHEDULING PROBLEM WITH TIME WINDOWS1 

 

ABSTRACT 

One of the most important operations in marine container terminals is quay crane 

scheduling.  The quay crane scheduling problem (QCSP) involves scheduling groups of 

containers to be loaded and unloaded by each quay crane.  It also requires addressing 

practical issues such as minimum spacing between quay cranes and precedence 

relationships between container groups.  This study addresses the QCSP with one 

additional consideration: time availability of quay cranes.  This problem is referred to as 

QCSP with time windows (QCSPTW) in the literature.  This study discusses the genetic 

algorithm (GA) developed to solve the QCSPTW.  It builds on a previously developed 

GA to solve the QCSP by the authors.  The results of a large set of numerical experiments 

using benchmark instances highlight several key characteristics of the proposed solution 

approach: (1) the developed GA can provide near optimal solutions in a faster time for 

medium and large-sized instances (overall average gap is less than 3%), and (2) the 

                                                           
1 Kaveshgar N. and N. Huynh. Accepted by Maritime Economics and Logistics. Reprinted here with 

permission of publisher, 11/04/2014.   
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developed GA leads to an improvement in the solution quality (lower vessel turn time) 

for instances with fragmented time windows.   

 

4.1 INTRODUCTION 

This study deals with the quay crane scheduling problem with time windows (QCSPTW).  

The key difference between the QCSPTW and the more commonly known quay crane 

scheduling problem (QCSP) is that the QCSPTW deals with an additional constraint: 

time availability of quay cranes. The assignment of the quay cranes to vessels may result 

in time windows for quay cranes consisting of different ready times and withdrawal 

times. This is because higher priority vessels may require additional quay cranes at 

certain times in order to expedite operations, which will result in the temporary removal 

of quay cranes from lower priority vessels.  Quay cranes’ time windows are an important 

practical issue that must be considered in quay crane scheduling.   

The objective of the QCSPTW is to determine the task sequence for each quay 

crane to minimize the vessel turn time or the latest time that all quay cranes are done with 

their assigned tasks while satisfying (1) the container groups’ precedence relationships, 

(2) crane interference and safety requirement, and (3) time availability of the cranes.  

Operationally, there exists a precedence relationship among container groups.   

Temporally, cranes have different time windows of availability for each vessel.  

In this study, up to two time windows are considered for each quay crane.  That is, a quay 

crane may leave a vessel it is currently serving, serve another vessel and then return to 

resume service for the original vessel.  In such a situation, the quay crane has two 

windows because it serves the first vessel at two different time windows. 
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The objective of this study is to develop a genetic algorithm (GA) solution 

approach for solving the QCSPTW which is known to be NP-hard.  It builds on the GA 

previously developed by the authors (Kaveshgar et al, 2012).  The modified GA has two 

key extensions: (1) the algorithm is modified in order to meet the time window 

constraints, and (2) a new procedure is developed to reassign tasks to quay cranes when 

they have to take on tasks left by a neighboring crane that is scheduled to leave and not 

return to the vessel.  The key differences between this study’s developed GA and other 

QCSPTW solution approaches are: (1) quay cranes are allowed to move in directions 

independent of one another, and (2) in certain situations, the quay cranes are allowed to 

change their directions.   

 

4.2 MATHEMATICAL FORMULATION OF THE QCSPTW 

The key parameters in the QCSPTW are the processing time of the tasks, tasks’ 

locations in terms of bay number, quay crane location, quay cranes’ assignment and 

precedence relationships between tasks.  In this study, it is assumed that the quay cranes 

have uniform productivity rate and are located along the quay in an increasing sequence 

from left to right.  The objective is to find the assignment of tasks to the quay cranes and 

the processing order of the tasks such that the latest completion time of the tasks (i.e. 

makespan) is minimized.  The solution should also satisfy the aforementioned 

constraints.  The time window method used in this study is based on the definition 

discussed by Meisel (2011).  If k is a quay crane then TWk is the set of time windows of 

that crane and u is a Time window from set TWk which represents the ready time and 

withdrawal time of the quay crane.  The ready time is denoted by rku, the initial position 



www.manaraa.com

 

52 

of the quay crane at the beginning of the time window is denoted as lI
ku, withdrawal time 

as dku and the position of the quay crane at the end of the time window is denoted as lF
ku.  

This information is assumed to be provided by the quay crane assignment plan.  The 

following example illustrates the quay crane assignment with time windows. 

 

Figure 4.1 Illustration of a quay crane assignment (Meisel 2011). 

 

The ready and withdrawal times (i.e. beginning and end times of time windows) 

are extracted directly from the crane assignment.  For example, in Figure 4.1, cranes 3 

and 4 are available throughout the vessel service time, but cranes 5 and 6 need to leave 

the vessel at time 250 and return at time 500.  An open ended time window is assumed 

for the cranes that will be working to the end of the vessel’s service interval.  Cranes 3, 4, 

5 and 6 have open ended time windows according to this definition.   

In Figure 4.1, there are two groups of cranes based on their initial locations.  The 

first group is the quay cranes that are ready when the vessel begins operation.  These 

cranes will be arranged along the vessel, with the left most crane starting at bay 1.  The 

second group consists of cranes that start sometime after the vessel operation has begun.   

This group will be positioned according to their approaching direction.  If they are 

going to approach from the right of a vessel (i.e. bow of vessel that has b bays) bays they 
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have to be positioned starting at bay b + 1+δ, b + 2(1+δ), and so on where δ is the safety 

margin between the quay cranes.  On the other hand if the quay cranes are approaching 

from the left (aft of vessel) then they will be positioned from 1 – (δ + 1), 1 – 2(δ + 1), and 

so on.  The same logic is true for the cranes’ final positions.  For the cranes leaving the 

vessel before its completion time they will be positioned in accordance to the direction of 

their movement, at bay b + 1+δ, b + 2(1+δ) and so on if they go to the right and at bay 1 – 

(δ + 1), 1 – 2(δ + 1) and so forth if they go to the left.  The group of quay cranes with an 

open ended time window will be arranged along the vessel, with the left most crane 

positioned at bay 1, and all other cranes positioned to its right (with each separated by the 

safety margin).  It should be noted that these final repositioning are not necessary.  They 

are simply done for completeness; the travel times involved in the repositioning do not 

affect the solution. 

The following presents the mathematical formulation of the QCSPTW developed 

by Meisel (2011). 

Notations:  

Indices 

ji,   Indices of tasks to be performed which are in an increasing order according to 

their locations on the ship-bay 

k  Quay crane number which is in an increasing order according to their locations on 

the ship-bay 

Problem data 

ip = thi Task processing time 

n = Total number of tasks 
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δ = Safety margin 

u = A time window and 
kTW∈u  

kur = Earliest available time of quay crane k (beginning of the time window) 

kud = Withdrawal time of quay crane k (the end of the time window) 

il = 
thi Task location (relative ship-bay number) 

ku
Il = Initial location of quay crane k at time window u (relative ship-bay number) 

ku
Fl = Final location of quay crane k at time window u (relative ship-bay number) 

t = Travelling time between two adjacent bays  

ku
Iit = Quay crane traveling time from its initial position at the beginning of the time 

window to the location of task i 

ku
iFt  = Quay crane traveling time from the location of task i to its final position at the 

end of the time window.  

M = A sufficiently large positive constant  

Set of indices 

Ω= Set of all tasks 

Q= set of quay cranes 

Φ  Set of tasks with precedence relationship.  When (i, j) ϵ Φ then processing of i 

must finish before the processing of j starts. 

)}0()(|),,,{( 22 ≥∆∧<×Ω∈=Θ vw
ijjiQwvji   Set of all possible combinations of a pair of 

tasks and a pair of quay cranes which need a temporal separation of processing Δij
vw.   

TWk  The set of time windows for quay crane k, u ϵ TWk 
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Decision variables: 





=
Otherwise0

  windowin time taskperformsQCIf1 uikku
i

x
 

iC = Completion time of task  





=
Otherwise0

taskoftimecompletionthethanlaterstartsprocessingtaskIf1 ij
ijy

 

maxC = Makespan (latest completion time of all tasks) 

Travel time of quay crane k  from thi  task to thj  is assumed to be proportional to the ship 

bay numbers: ij ll −  

Objective Function: 

Minimize
maxC  (4.1) 

Subject to: 

Ω∈∀≥ iCC i
max  (4.2) 

Ω∈∀=∑ ∑
∈ ∈

ix
Qk TWu

ku
i

k

1  (4.3) 

Ω∈∀+≥− ∑ ∑
∈ ∈

itrxpC
Qk TWu

ku
Ii

kuku
iii

k

)(  (4.4) 

Ω∈∀+≤∑ ∑
∈ ∈

itdxC
Qk TWu

ku
iF

kuku
ii

k

)(  (4.5) 

Θ∈∀++≤+ ∑∑
∈∈

),,,(1 wvjiyyxx jiij
TWu

wu
j

TWu

vu
i

wv

 (4.6) 

Θ∈∀−−−≤+−∆+ ∑∑
∈∈

),,,()3( wvjixxyMpCC
wv TWu

wu
j

TWu

vu
iijjj

vw
iji  (4.7) 

Θ∈∀−−−≤+−∆+ ∑∑
∈∈

),,,()3( wvjixxyMpCC
wv TWu

wu
j

TWu

vu
ijiii

vw
ijj  (4.8) 

i



www.manaraa.com

 

56 

Φ∈∀≤+− ),(0 jipCC jji  (4.9) 

Ω∈∀≥ ),(0 jiCi  (4.10) 

{ } k
ij

ku
i TWuQkjiyx ∈∈Ω∈∀∈ ,,,1,0,  (4.11) 

In this formulation, vw
ij∆  is defined as the minimum time span between the 

processing of tasks i and j assigned to quay cranes v and w.   

According to Bierwirth and Meisel (2009) and Meisel (2011), vw
ij∆  will be 

calculated as follows.  Additional information about vw
ij∆  could be found in the 

aforementioned papers.   

 

 

vw
ij∆  = 














−

≠=⋅−

−>≠<⋅+−

+<≠>⋅+−

otherwise

andif||

andandif,)(

andandif,)(

M

jiwvtjlil
vwjliljiwvtvwjlil
vwjliljiwvtvwiljl

δδ

δδ

(4.12) 

vwδ  is the smallest acceptable distance between the position of the two quay 

cranes v and w.   

||)1( wvvw −⋅+= δδ  

The objective function (4.1) minimizes the vessel handling time, which is the 

latest completion time of all tasks.  Constraint (4.2) calculates the vessel handling time (

maxC ).  Constraint (4.3) forces each task to be chosen by exactly one quay crane during 



www.manaraa.com

 

57 

one of its time windows.  Constraint (4.4) ensures that the task is not started earlier than 

the assigned quay crane time window considering the travel time between the initial 

position of the quay crane and the task location.  Constraint (4.5) guarantees that each 

crane will be at its final position before the withdrawal time.  Constraints (4.6) through 

(4.8) ensure no conflict between the quay cranes.  In particular, constraint 6 ensures that 

no two tasks belonged to the set Θ can be processed concurrently, and constraint 4.7 

allows sufficient time between the completion of one task and the starting of the next 

task.  In constraint (4.8), if both tasks are done by the same crane then a duration equal to 

the processing of the tasks are inserted as well as the time required for the crane to move 

from bay location li to bay location lj.. Finally, constraint (4.9) ensures that precedence 

relationships between the tasks are respected.  The remaining constraints specify the 

range of the decision variables. 

In the work by Meisel (2011), three additional constraints were considered to 

reduce the computation time.   

k
j

j

ku
j

ku
Ii

kuku
i TWuQkiPXtrxC

v

∈∀∈∀Ω∈∀⋅++⋅≥ ∑
Ω∈

,,)(max  (4.13) 

kku
F

ku
I

kuku
j

j

ku
j TWuQktllrdPx

v

∈∀∈∀⋅−−−≤⋅∑
Ω∈

,  (4.14) 

kku
iF

ku
Ii

ku
i

kuku
j

j

ku
j TWuQkitttxrdPx

v

∈∀∈∀Ω∈∀⋅−−−≤⋅∑
Ω∈

,,)(  (4.15) 

Constraints (4.13) and (4.14) guarantee that the total processing time of the tasks 

will not exceed the capacity of the assigned time window.  Constraint (4.15) relates a 

crane’s travel time with its capacity within the time window (i.e. the capacity decreases 

each time the crane moves to a different bay). 
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4. 3 PROPOSED GENETIC ALGORITHM  

In this study, the GA provided in the MATLAB 2011b Global Optimization 

Toolbox is modified and used.  Figure 4.2 shows the proposed GA framework.  The 

details of the GA steps are presented in Chapter 3.  The key modifications made to the 

GA in Chapter 3 to solve the QCSPTW are: 

 

 

Figure 4.2 Flowchart of methodology using GA (Kaveshgar et al, 2012). 
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4.3.1 INITIAL SOLUTION 

The GA involves generating an initial solution which is based on the S-LOAD 

rule proposed by Sammarra et al. in (2007) is used.  The S-Load rule divides the 

workload equally among the cranes, but to make it work for the QCSPTW a modification 

is required.  This study adopts the modification proposed by Meisel (2011) in which the 

initial solution only considers quay cranes with an open-ended time window and the 

workload is divided only among the open-ended quay cranes.  This modification ensures 

that the set of tasks assigned to a quay crane would not violate its capacity.   

4.3.2 CHROMOSOME REPRESENTATION 

Each solution in GA is called a chromosome and each gene represents a decision 

variable.  The chromosome shown in Equation (4.16) consists of three kinds of genes: Xs 

are the sequence of tasks assigned to the quay cranes, Ks represent the number of tasks 

assigned to the quay cranes, and finally Hs represent the movement direction of each 

quay crane (ascending or descending).   

]...[
111 212121 mmn hhhkkkxxxs =  (4.16) 

4.3.3 OBJECTIVE FUNCTION EVALUATION  

A function is developed to simulate the operations of QCs with time window.  

This function receives input data (number of QCs and tasks, task locations, QC initial 

locations, safety margin, precedence relationship between tasks, time windows, etc.) and 

returns the makespan of each chromosome.   

Time window in Objective Function 

In the QCSPTW, cranes may have multiple time windows.  These time windows 

enforce temporal restrictions on quay cranes.  In this study, if a quay crane schedule 
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involves a time window, two situations may occur.  In the first situation the quay crane 

temporarily leaves the vessel and would come back to resume its work schedule.  In this 

case, the remaining tasks, if any, will be completed by the same quay crane in the next 

time window.  In the second situation, the quay crane will leave the vessel and will not 

come back.  Thus, the remaining tasks will need to be assigned to the nearest quay crane 

that will continue to work on the vessel.  Reassignment of the tasks to another quay crane 

is a part of the chromosome validation procedure and ensures that a quay crane’s 

schedule would not violate its time window constraints.  If a quay crane will process a 

departing neighboring crane’s remaining tasks, these tasks need to be rearranged in order 

to decrease the travel time.  An example is illustrated in Figure 4.3. 

 

 

Figure 4.3 Example illustrating how reassignment of tasks is performed. 
 

Consider a situation in Figure 4.3 in which the set of tasks that should be done by 

crane 2 is 3, 4, 5, and 6 and after processing tasks 3 it has reached the end of its time 

window and along with crane 1 leaves the vessel.  Tasks 4, 5 and 6 are the set of 

remaining tasks that will be assigned to crane 3.  The original set of tasks for crane 3 is 7, 

8 and 9. In order to reduce the travel time of crane 3, the new set of tasks needs to be 

rearranged.  That is, we want to arrange the tasks such that crane 3 would continue to 

travel in the ascending direction to finish tasks 8 and 9, and then move to task 6 and 
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move in the descending direction to finish tasks 5 and 4.  In situations when a quay crane 

takes on a neighboring crane’s tasks, our GA heuristic will rearrange tasks such that it 

will result in the crane traveling fewer numbers of bays to finish all of its assigned tasks 

and, if necessary, change movement directions. 

 

4.3.4 STOPPING CRITERIA  

Different stopping criteria could be used for terminating the GA.  In this study, the 

following stopping criteria are used: 

• Generations — the algorithm stops after reaching a certain number of generations. 

• Stall generations — the algorithm stops if the weighted average change in the 

objective function value over Stall generations is less than Function tolerance. 

• Function Tolerance — the algorithm stops when the cumulative change in the 

objective function value over Stall generations is less than or equal to the 

Function tolerance (1e-6) over the stall generations limit. 

 

4.4 ILLUSTRATION OF DIFFERENCES BETWEEN SOLUTIONS OF PROPOSED 

APPROACH AND OTHER APPROACHES 

As mentioned, a key difference in this study’s developed solution approach is that 

the quay cranes are allowed to move in different directions, but they are not allowed to 

change their directions, except when they need to complete tasks of a neighboring quay 

crane.  Figures 4.4a and 4.4b show the difference between a unidirectional solution 

generated by others studies’ method and the non-unidirectional constraint solution 
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generated by this study’s method.  The example problem used set A benchmark data 

provided by Meisel (2011) which is presented in Table 4.1.   

 

Table 4.1 Input data for set A: instance 1 (Meisel 2011). 

Task number 1 2 3 4 5 6 7 8 9 10 

processing 
times (pi) 

20 33 52 64 7 69 40 139 7 8 

bay locations 
(li) 

1 2 2 2 2 3 4 5 5 6 

Task number 11 12 13 14 15 16 17 18 19 20 

processing 
times (pi) 

67 2 4 30 52 8 59 125 24 190 

bay locations 
(li) 

6 6 6 7 7 8 8 9 9 10 

precedence 
relations 

Φ = [(2, 3), (2, 4), (3, 4), (2, 5), (3, 5), (4, 5), (8, 9), (10, 11), (10, 12), (11, 12), 
(10, 13), (11, 13), (12, 13), (14, 15), (16, 17), (18, 19)] 

Number of bays = 10; safety margin = 1, crane travel time = 1 

Crane k Time window u Ready 
time rku 

Withdrawal  
time dku 

Initila position 
lI

ku 
Final position 

lF
ku 

1 1 334 668 -1 -1 

2 1 0 334 1 12 

2 2 668 M 12 1 

 

The example problem consists of 2 quay cranes and 20 tasks.  The quay cranes 

follow pattern IV illustrated in Figure 4.5.  In this pattern, crane 2 is available at the 

beginning, but it would leave the vessel after some time and then resume its work and 

will be available until the end of service (open ended time window). Crane 1 is only 

available during one time window and is not available at the beginning of the service.   

Both solutions shown in Figures 4.4a and 4.4b are obtained using GA with the 

same parameters.  Since the schedules are obtained from GA, it provides a good reference 
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for comparing the difference in solution characteristics.  Both solutions are feasible since 

the precedence relationship, safety margin, the interference of the quay cranes and the 

time windows are respected.  In Figures 4.4a and 4.4b, two numbers are shown in each 

box.  They denote the task number and the time in which that the quay crane is done with 

that task.  In Figure 4.4a, crane 2 resumes the assigned tasks in the second time window.  

Because there has been a reassignment of the tasks from crane 1 to crane 2, though its 

previous direction is ascending, it is allowed to change direction in the second time 

window.  This means that it can perform tasks that are located on lower bay numbers than 

its final task and it can start from a task that is closer to its initial location in the second 

time window (bay 12).   

This method results in less travel time between the bays.  Moreover, due to the 

fact that the quay crane can resume its jobs in a different direction in a new time window, 

it can more efficiently use the capacity of the time window.   

As shown in Figure 4.4a, crane 2 would travel up to bay 9 to process task 18 and 

therefore can use 327 time units of the first time window.  For the solution shown in 

Figure 4.4b using the unidirectional approach, because of the constraint to maintain the 

same direction throughout the service crane 2 has limited choice and can only use 313 

time units of the first time window.  That is, the unidirectional constraint forces a crane 

moving in the ascending direction to start its work from a bay higher than the one it has 

left at the end of its first time window.  For this reason, it is less effective in certain 

scenarios. 
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(a) 

 

(b) 

Figure 4.4 Solution for QCSPTW: (a) using proposed approach; (b) using unidirectional 
approach. 

 

4.5 EXPERIMENTAL DESIGN 

The proposed modified GA is evaluated using the set of benchmark instances 

proposed by Meisel (2011).  These instances provide information such as processing 

time, bay location of the tasks, total number of bays, ready times and initial location of 

the quay cranes, and the precedence relationships between the tasks.  These instances can 
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be generated using QCSPgen which is available online at http://prodlog.wiwi.uni-

halle.de/qcspgen.  

This study uses three different sets of benchmark instances in which the travel 

time between each ship bay is 1 time unit and the safety margin is 1 ship bay.  These are 

the same data used in the study by Meisel (2011) from which this study seeks to compare 

the results against.  These three sets correspond to different sizes of vessels: small, 

medium and large.  Each set includes 10 different instances.  A summary of the 

characteristics of these sets is presented in Table 4.2. 

 

Table 4.2 Parameters of the set of instances (Meisel 2011). 

Set Description 
Number 

of 
instances 

Number of 
bays b 

Number of 
tasks n ∑ iP  Bay capacity 

A Vessel of small size 10 10 20 1000 200 

B Vessel of medium 
size 10 15 50 3000 400 

C Vessel of large size 10 20 80 6000 600 
 

Figure 4.5 provides the time window patterns used in the experiments, which 

were proposed by Meisel (2011).  As shown in Figure 4.5, there are four different time 

windows and three different number of quay cranes (2, 4 and 6). Each time window 

specifies the ready times, withdrawal times, and the initial and final positions of the 

cranes.  In pattern I, all the cranes are available at the beginning of the service and then 

half of the cranes are removed.  In pattern II, one set of cranes start the service and they 

are replaced by another set of cranes at a later time.  Cranes in patterns III and IV have 

more than one time window.  In pattern III, all the cranes are available to start the service 

but after a while a subset of the cranes leave the vessel temporarily (a vessel with a 

higher priority must be served by these cranes).  In pattern IV, the average number of the 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=03050548&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fprodlog.wiwi.uni-halle.de%252Fqcspgen
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=03050548&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fprodlog.wiwi.uni-halle.de%252Fqcspgen
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cranes serving a vessel is kept constant while some of them are temporarily removed and 

replaced with new cranes.  All patterns, except for pattern III, have quay cranes that leave 

a vessel permanently, and consequently, if there are any remaining tasks left by these 

cranes, they will be reassigned to the neighboring cranes.   τ in Figure 4.5 represents a 

point in time (ready times and withdrawal times of the cranes).  The value τ is selected 

according to the total processing time of the tasks in a QCSPTW instance.  It will 

guarantee that the capacity of the cranes assigned to a vessel meets the total processing 

time of all the tasks in a set of instances. Thus, three different values τA, τB and τC are 

provided for three set of instances A, B and C. For example, τB is set to 1000 for pattern 

IV with two cranes, which means that the total capacity of the two cranes becomes equal 

to 3000 time units.  This is equal to the ∑Pi (task processing time) for set B provided in 

Table 4.2 (Meisel 2011).   

Figure 4.5 Different quay crane assignments used in experiments (Meisel 2011) 
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The “options” specify the parameters for the GA algorithm.  These parameters 

include population size, mutation and crossover operations.  The following shows the 

parameter values used in the experiments.   

Options=gaoptimset('display','iter','Generations',nG,'PopulationSize',nP,'StallGen

Limit',nS,'TolFun',eps,'CrossoverFraction',.9,'InitialPopulation',P0); 

The stall generation (nS) is set to 150, the Function Tolerance (eps) is set to 

2.22x10e-16, and the population size (nP) is set to 50 individuals in all experiments.  

Number of generations (nG) is set to 150.  The experiments were conducted on a PC with 

4 GB of RAM and 2.80 GHz processor.  In total, 240 QCSPTW instances were tested and 

the results were compared with the ones obtained by Meisel (2011).   

 

4.6 RESULTS AND DISCUSSION 

The results obtained from the developed GA are presented in Table 4.3.  The 

objective function values and the computation times are compared against the results 

reported in Meisel’s work (2011) which used UDSTW (the unidirectional search heuristic 

for the QCSPTW).  The first two columns show the time window pattern used in the 

problem and the number of quay cranes.  The reported gap measures the difference 

between the non-unidirectional method solution and the ones obtained by Meisel (2011) 

and are averaged over ten instances in a set.  In Meisel’s work (2011), two different 

computational times are reported. The second one is achieved after activating the lower 

bounds proposed in their approach which yield considerably faster computation times 

than the one without these lower bounds.  The computation time achieved by this study’s 

non-unidirectional method is compared with the lower computation time reported in 
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Meisel’s work (2011).  The solution method used in Meisel’s work (2011) has a runtime 

limit of ten minutes for each instance.   

For set A with 20 tasks and with 2 and 4 quay cranes the gap ranges from 0.1% to 

4.9% and the average gap is 2.7%; a negative gap indicates that this study’s approach 

yields a lower objective function value.  The developed non-unidirectional method 

improved the solution quality in the set of instances using time window pattern IV with 2 

quay cranes.  The main reason that contributed to better solutions (i.e. lower objective 

function value) is the cranes’ ability to change directions as illustrated in Figures 4.4a and 

4.4b.   

For set B with 50 tasks and with 2 and 4 quay cranes the average gap is 1.05%.  

The proposed non-unidirectional method yields better solutions (lower objective function 

values) in comparison to the best available solution for instances with two quay cranes 

and time window patterns III and IV.  The minimum gap is -0.4%, for instances with 2 

quay cranes and time window pattern IV.  Similar to the previous set (set A), the greatest 

gap occurred in instances involving a high number of quay cranes (4 quay cranes for set 

B).  The maximum gap is 5.0%.  Except for one instance (in pattern II with 2 cranes) the 

proposed non-unidirectional method’s computation times are lower than the UDSTW’s 

obtained by Meisel.  The maximum improvement in the computation time is achieved for 

an instance with 4 quay cranes and pattern II in which the computation time of the 

proposed non-unidirectional method is 16 times faster than the UDSTW.  The average 

computation time is about 10 times faster than the UDSTW. 

For set C with 80 tasks and with 4 and 6 quay cranes the average gap is 3.1%.  

The higher average gap is due to instances involving 6 quay cranes.  In all sets, the gap 
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grows as the number of quay crane increases.  These results are consistent with the results 

reported by Lee et al. (2008) and Kaveshgar et al. (2012).  It could be concluded that 

when the number of tasks are constant, increasing the number of cranes highly affects the 

solution quality obtained by GA.  It should be noted that in reality it is rare to have 6 

quay cranes on a vessel, but it was done here for comparison purposes.  For set C, the 

maximum gap is 6.9 %.  In all instances in set C the UDSTW run time limit is reached 

(10 minutes) and the proposed non-unidirectional method achieves lower computation 

time.  On average, the proposed non-unidirectional method is about 9 times faster than 

the UDSTW for set C. 

Time window patterns III and IV are more fragmented, meaning that these 

patterns have more than one time windows.  Pattern III and IV represent the situations in 

which a couple of QCs leave the current vessel for a certain amount of time to serve a 

vessel with higher priority and after they finish working on the vessel with higher 

priority, they would resume their work on the current vessel.  It can be concluded from 

the results reported in Table 4.3 that the proposed non-unidirectional method is more 

successful in finding higher quality solutions (i.e. lower objective function values) in 

comparison to the unidirectional method for time window patterns III and IV.  Generally 

speaking, the proposed non-unidirectional method is promising in situations when QCs’ 

time windows are more fragmented.  More specifically, the proposed non-unidirectional 

method works better in situations where a QC has two time windows because it does not 

require the QC to resume its work on the same bay where it left to service another vessel 

and therefore result in more flexible schedules with less QC travel times.   
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Table 4.3 Comparison of non-unidirectional method performance against current best 
solution. 

Set A 

Pattern Number of QCs 
UDSTW (Meisel 2011) Developed GA 

Gap* (%) max
UDSTWC  Average Time(s) max

GAC  Time(s) 

I 2 684.1 < 1 684.4 14 0.0 
4 392.5 1 399.9 19 1.9 

II 2 1020.9 < 1 1029.7 13 0.9 
4 525.1 2 548.4 18 4.4 

III 2 625.1 < 1 634.2 15 1.5 
4 381.8 21 412.2 21 8 

IV 2 1045.9 < 1 1036.5 14 -0.1 
4 396.4 3 415.7 20 4.9 

Average  634.0 4 645.1 17 2.7 

Set B 

I 
2 2025.2 277 2025.1 35 0 
4 1021.8 587 1034.8 40 1.3 

II 
2 3027.3 6 3035.6 30 0.3 
4 1528.8 600 1553 37 1.6 

III 
2 1828.6 84 1826.7 34 -0.1 
4 953.3 577 1001 40 5.0 

IV 
2 3052.1 72 3040.2 31 -0.4 
4 1048.0 600 1055.6 38 0.7 

Average  1810.6 350 1821.5 36 1.05 

Set C 

I 4 2031.5 600 2040 57 0.4 
6 1461.2 600 1548.7 68 6.0 

II 4 3036.6 600 3054.7 56 0.6 
6 2063.6 600 2126.1 69 3.0 

III 4 1841.2 600 1901.1 60 3.2 
6 1348.9 600 1441.8 76 6.9 

IV 4 2034.7 600 2064.6 57 1.5 
6 1641.1 600 1691.5 71 3.1 

Average  1932.4 600 1983.6 64 3.1 
* 100/)( maxmaxmax ×− UDSTWUDSTWGA CCC  

 

4.7 CONCLUSION 

This study developed an efficient GA for solving the QCSPTW. The proposed 

approach differs from the work of Meisel (2011) and Legato et al. (2011) in that cranes 

are allowed to move in different directions independently and that cranes are allowed to 

change their directions in specific situations.  The results of a large set of numerical 

experiments using benchmark instances highlight several key characteristics of the 

proposed solution approach: (1) the developed GA can provide near optimal solutions in 
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a faster time for medium and large-sized instances (overall average gap is less than 3%), 

and (2) the developed GA leads to an improvement in the solution quality (lower vessel 

turn time) for instances with fragmented time windows.   

From a practical point of view, unidirectional schedules may require all the QCs 

to work at one end of the vessel.  This may make them inapplicable in actual practice.  

Based on this study’s findings, additional research is needed to investigate the 

effectiveness of the non-unidirectional method on fragmented time windows. Since the 

quay crane assignment enforces temporal and spatial restrictions on the quay crane, it can 

be inferred from this study’s findings that the quay crane allocation problem directly 

affects the quay crane scheduling problem.  Thus, future research should consider these 

two problems jointly.  Additionally, the potential of using the non-unidirectional method 

for solving integrated problems (considers two or more terminal operational problems 

jointly) should be explored.  Integrated models are much more complicated to solve, and 

thus, researchers will need to explore distributed and parallel computing techniques to 

reduce the computation time. 
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CHAPTER 5 

 

INTEGRATED QUAY CRANE AND YARD TRUCK SCHEDULING FOR 

UNLOADING INBOUND CONTAINERS1 

 

ABSTRACT 

To lower vessel turn time, it is crucial that the operations of quay cranes, yard 

trucks, and yard cranes are well coordinated.  Most studies have sought to optimize each 

of these processes independently.  Since the operations by quay cranes and yard trucks 

are highly interrelated it is necessary to develop and solve these operations in an 

integrated manner that reflects the characteristics of the marine container terminals.  This 

study developed a mixed integer programming model for scheduling quay cranes and 

yard trucks jointly.  The integrated model explicitly considered real-world operational 

constraints such as precedence relationships between tasks, blocking, quay crane 

interference, and quay crane safety margin.  To solve the integrated optimization model, a 

genetic algorithm (GA) combined with a greedy algorithm was developed.  The results 

indicated that the solutions obtained from the integrated model are superior to those 

obtained from the non-integrated approach.  The GA solutions demonstrated that the 

                                                           
1 Kaveshgar N. and N. Huynh. Accepted by International Journal of Production Economics, Reprinted 

here with permission of publisher, 09/17/2014.  



www.manaraa.com

 

73 

developed integrated model is solvable within reasonable time for an operational 

problem. 

 

5.1. INTRODUCTION 

Containerization has grown dramatically in the last decade.  UNCTAD (United 

Nations 2012) states that the world container trade expressed in TEUs (twenty-foot 

equivalent units) has grown 7.1% in 2011 and the world container terminal throughput 

has increased by 5.9% to its highest level ever (572.8 million TEUs) in 2011.  Marine 

container terminals respond to this increase in container trade by improving their level of 

service.  The most critical objective for terminal operators is to lower the vessel turn time 

(i.e. the total time a vessel spends at the terminal).  

Figure 5.1 shows the typical layout of a marine container terminal.  It consists of a 

quay side area with berths for vessels to dock and a container yard to store containers.  

The containers are stored in yard blocks that are six wide, four high, and 40 TEU long.   

As illustrated in Figure 5.1, there are three primary container handling equipment 

in a terminal: quay cranes, yard cranes, and yard trucks.  Quay cranes (QCs) are 

responsible for loading and unloading containers to and from the vessel.  Yard cranes 

(YCs) are responsible for stacking and retrieving the export and import containers to and 

from the yard blocks.  Yard trucks (YTs) are responsible for transporting the containers 

between the quay cranes and yard cranes.  Containers on a vessel are typically segregated 

into groups based on port of discharge, container size, and container weight.  These 

container groups (i.e. inbound/import containers, referred to as tasks) are usually located 

on adjacent bays in the vessel.   
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Figure 5.1 Typical layout of a marine container terminal. 
 

Once a vessel berths along the quay area and is secured, vessel operations 

commences.  The unloading process involves three stages: (1) the QCs pick up containers 

from the vessel and loads them onto the YTs, (2) the YTs transfer the containers to the 

YCs, and (3) the YCs stack the containers in the designated yard blocks.  Any delay in 

these three stages would increase the overall vessel turn time.  Hence, it is essential that 

the scheduling of tasks between these processes are coordinated.  

Most studies have addressed the optimization of QCs, YCs, and YTs operations 

independently of one another.  Recently, researchers have examined different 

Quay Area 
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combinations of the QCs, YTs, and YCs processes jointly, in part due to the advances in 

computing technology.  In particular, a few studies have examined the QCs and YTs 

operations jointly (Jinxin et al. 2010), and QCs, YCs and YTs jointly (Chen et al. 2007 and 

2013).  Due to the complexity in modeling and solving the integrated models, these 

papers simplified the scope of the problem by considering just one QC and ignored real-

world operational constraints such as precedence relationships between tasks, quay crane 

interference, and safety margin.  

This study addressed these limitations for the integrated QC-YT problem.  To this 

end, it developed a new mathematical formulation and solution method to solve the 

integrated model.  The developed model is more comprehensive than existing integrated 

models.  Specifically, it considered multiple quay cranes and also the operational 

constraints such as precedence relationships between tasks, blocking, quay crane 

interference, and quay crane safety margin.  The developed solution approach utilized a 

greedy algorithm to find initial solutions and a genetic algorithm to find optimal 

solutions. 

 

5. 2. MATHEMATICAL MODELING  

The objective of the integrated QC-YT problem is to find the assignment of tasks 

to the equipment (QCs and YTs) and the processing order of the tasks in such a way that 

the latest completion time of the tasks (i.e. makespan) is minimized while satisfying 

precedence relationships between tasks, blocking, quay crane interference, and safety 

margin.  Precedence relationships between tasks require that some tasks be completed 

before others.  For example, unloading operation must start with tasks on the deck before 
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proceeding to the tasks in the hold (below deck) when the tasks share the same bay.  

There is no buffer area available for quay cranes and trucks.  Therefore, they have to 

finish the current task in order for the equipment in the next stage to start processing it; if 

not, it is considered blocking.  As illustrated in Figure 5.1, QCs travel on the same rail 

track and thus cannot cross one another.  This is an important operational characteristic 

that limits the movement of the QCs and presents situations where cranes interfere with 

one another.  For safety reasons, quay cranes are typically kept at a safe distance from 

one another, called safety margin.  In this study, the number of quay cranes assigned to a 

vessel, processing time of the tasks, locations of tasks in terms of bay number, locations 

of quay cranes, precedence relationships between tasks, and travel time of trucks are 

assumed to be known in advance.  Also, quay cranes are assumed to have a uniform 

productivity rate and are located along the quay in an increasing sequence from left to 

right.   

In practice, the loading and unloading of containers onto and off the vessel are 

done separately and in stages.  That is, some import containers are unloaded and then the 

empty spaces are filled with export containers.  This process is repeated until all import 

containers are discharged and all export containers are loaded.  In this study, only the 

unloading procedure is considered (for import containers); however, the developed model 

could also be used for loading procedure.  

The integrated QC-YT problem is formulated based on the hybrid flow shop 

scheduling (HFSS) problem.  In a HFSS, there are n tasks in a set called Ω that need to be 

processed in t consecutive stages.  Each stage has K identical machines 

TttKkt ...,,2,1,)( == .  Each stage t, has 1≥tk  parallel identical machines and for at 
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least one stage 2≥tk .  The processing time of task i at stage t is denoted as itp  and each 

machine can only process one task at a time.  The tasks have a unidirectional flow 

through the shop.  The objective is to assign the tasks to the machines and sequence the 

assigned tasks in order to minimize the makespan.  In practice, a QC operates on one 

group of containers (i.e. tasks) at a time until all containers in the group are all unloaded.  

Thus, it is only necessary to solve the problem at the task level in the QC stage.  This fact 

is used in this study to reduce the number of decision variables in the first stage (quay 

crane scheduling).  However, in the second stage (yard truck scheduling) each individual 

container is considered a task.   

Problem Parameters 

Task = group of containers (first stage) or individual container (second stage) 

=t Stage index 

=Ωt Set of tasks at stage t 

=B Set of first container number in a task }{ ib  

=H  Set of last container number in a task }{ ih  

=R  Set of the containers in a group of containers, other than the first container in that 

group 

ib = First container number in a task i 

ih = Last container number in a task i 

=tn Total number of tasks in stage t 

=ji,  Task index 

=itK  Set of machines at stage t (QCs in stage 1 and YTs in stage 2) 
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=k  Machine index  

=tk  The number of machines at stage t 

=Φ  The set of precedence constrained tasks 

=il  Bay position  

=kl0  Initial position of quay crane (k) 

=ktf  Earliest available time of machine k at stage (t) 

=itp  Processing time of task i at stage t (1, 2).  At stage 2 it is the required time for 

transporting container i to its storage location in yard. 

=g  QC travel time 

=δ  Safety margin 

=M  Large positive number 

)}0()(|),,,{( 22 ≥∆∧<×Ω∈=Θ vw
ijjiQwvji   Set of all possible combinations of a pair 

of tasks and a pair of quay cranes which need a temporal separation of processing vw
ij∆ .   

=d  The required time for unloading a container from yard truck by a yard crane   

Travel time of quay crane k  from thi  task to thj  task is assumed to be relative to the ship 

bay numbers. ij ll −  

Dummy containers and tasks are denoted by 0 and T 

Decision variables 





=
Otherwise0

 stageat ely   consecutiv task andtask  performsmachine Iff1 tjik
xk

ijt  
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



=
Otherwise0

 satgeat   task of completion after the startstask Iff1 tii
zij  

=itc  Completion time of task i at stage t 

=is  Starting time of task i at stage t 

T
c = Makespan (latest completion time of all tasks) 

Objective Function 

Minimize tC  (5.1) 

Constraints 

t
j

k
jt Kktx

T
t

∈∀∈∀=∑
Ω∈

},2,1{10  (5.2) 

t
i

k
iTt Kktx

t

∈∀∈∀=∑
Ω∈

},2,1{1
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 (5.3) 

}2,1{,1 ∈∀Ω∈∀=∑ ∑
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 (5.4) 
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 (5.5) 

1,,,)1( =∈Ω∈∀−×≤+−+−× tKkjixMscpllg tt
k
ijthtbtbbb ijjji

 (5.6) 

1,),(0 =Φ∈∀≤−+ tjicps thjtth ji
 (5.7) 

1,,)1( =Ω∈∀−≤−+ tjizMcps tijthjtth ji
 (5.8) 

1,,)( =Ω∈∀≤−− tjizMcps tijthjtth ij
 (5.9) 

1),),,,((1
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1),),,,(()3(
0 0

=Θ∈−−−≤−+∆+ ∑ ∑
Ω∈ Ω∈

twvjixxzMcps
t t

ij
u u

w
ujt

v
uitjitbit

vw
jith

 (5.12) 

1,,)1( 00 =∈∀Ω∈∀−×≤+−×+− tKkjxMpllgcf tt
k

jttbb
k

tbkt jjj
 (5.13) 

),2,()1( tt
k
iTtTtit KktixMcc ∈=Ω∈∀−≤−  (5.14) 

)1,(01)( =Ω∈∀≤+− − tiscp triritri  (5.15) 

)1,( 1 =Ω∈∀≥ + tics titi  (5.16) 

),2,,()1( ttitit
k
ijtj KktjipcMxs ∈=Ω∈∀+≥−+  (5.17) 

),2,(0)1( 0 tt
k

jtj KktjMxs ∈∀=Ω∈∀≥−+  (5.18) 

)2,( =Ω∈∀≤++ ticdps tititi  (5.19) 

 

Model Explanation 

Equation (5.1) is the objective function which seeks to minimize the makespan.  

In constraints (5.2) each machine chooses one dummy task (0) as its first task at each 

stage.  Constraints (5.3) force each machine to choose one dummy task (T) as its last task 

at each stage.  Constraints (5.4) ensure that each task is done by one and only one 

machine at each stage.  Constraints (5.5) define the sequence of the tasks.  Each task has 

only one task before and after itself at each stage.  Constraints (5.6) determine the 

completion time for each task (container group) and eliminate sub-tours.  This is done by 

relating the completion time of the first container in a group (stage 1) to the time that the 

last container of previous group is delivered to a yard truck plus the quay crane transport 

time between these two tasks and processing time of the first task of the current group by 

QC.  Constraints (5.7) require that task i be completed before task j if they belong to set
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Φ .  Constraints (5.8) define ijz such that ijz is equal to 1 in the case that the operation of 

task j starts after the operation of task i is complete, and 0 otherwise.  Constraints (5.9) 

define ijz , meaning that if ijz  is 0, then task j can start before the completion time of the 

task i.  Constraints (5.10) guarantee that tasks i and j are not processed simultaneously by 

v and w. If 0=+ jiij zz  (meaning that these two tasks are done simultaneously) the other 

side of the equation needs to be less than or equal to 1, which means the two tasks are not 

done by quay cranes v and w.  In the case 1=ijz , constraints (5.11) would insert the 

necessary time computed by Equation (5.20) that has to be elapsed before two adjacent 

quay cranes can process two tasks close to each other.  Constraints (5.12) work in the 

same manner as (5.11) but for the case 1=jiz .  Constraints (5.13) restrict the earliest 

starting time of operations by each QC (defines the completion time of the first container 

of the task).  Constraints (5.14) make sure that the dummy task T is selected as the last 

task.  Constraints (5.15) compute the completion time of the containers which are in a 

group.  The completion time of the first container in a group is calculated by constraints 

(5.16).  Constraints (5.17) state that a container can be transported (stage 2) only after it 

has been processed by the QC (stage 1).  Constraints (5.18) work in the same manner as 

Constraints (5.17), but for dummy task 0.  Constraints (5.19) state that a container incurs 

travel time to the yard (stage 2) and stacking time. 

In this formulation vw
ij∆ is defined as the minimum time span between the 

processing of tasks i and j assigned to quay cranes v and w.  Constraints (5.10), (5.11) and 

(5.12) are based on constraints A.11 to A.13 from (Bierwirth and Meisle 2009).   

According to (14), vw
ij∆  is calculated as follows:   
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








+<≠>+−

−>≠<+−

otherwise0

andandif,.)(

andandif,.)(

vwjliljiwvtvwiljl

vwjliljiwvtvwjlil

δδ

δδ

 (5.20)

 

vwδ is the smallest acceptable distance between the position of the two quay cranes v and 

w.   

||.)1( wvvw −+= δδ  

Additional information about vw
ij∆  could be found in the aforementioned paper.  

 

5.3. PROPOSED GENETIC ALGORITHM  

In this study, the GA provided in the MATLAB 2012b Global Optimization 

Toolbox is used but modified for the current problem.  This version of GA has the 

capability to solve mixed integer nonlinear programming problems and has been used in 

Kaveshgar et al. (2012).   

The overall GA framework is shown in Figure 5.2.  Before GA starts, two lower 

and upper bounds are calculated for the task numbers and the number of tasks that can be 

processed by each equipment (see Section 3.3 for more details).  In order to reduce the 

computation time, a two-stage heuristic is used to create a high quality initial solution for 

the GA.  The initial solution has two parts.  The first part is used for the first stage of the 

problem (quay crane scheduling) and is based on the S-LOAD rule proposed by 

Sammarra et al. (2007).  The second part is used for the second stage of the problem 

(yard truck scheduling) and is based on a heuristic proposed by Bish et al. (2005) and 

used in (Lee et al. 2008).  Bish et al. (2005) showed that their heuristic finds the optimal 

solution for problems with one QC, but they also showed that due to its “myopic” nature 
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it could only find near optimal solutions for multiple QCs.  We extended Bish’s look-

ahead rule to work for multiple QCs.  It is essentially a greedy algorithm.  Below we first 

explain how the look-ahead rule work and then explain the improvement we made to it.   

Let njandqi jq ,...,2,12,1,, ==  denote the jth task in the task sequence of quay 

crane q.  Each task is represented in terms of its traveling time between the ship and its 

location in the storage yard area.  Each vehicle that arrives at the ship area looks for the 

earliest task (container) that is ready to be picked up.  When there are multiple QCs, it 

may happen that multiple tasks are ready at the same time.  In Bish et al. (2005), a weight 

is assigned to each task and the truck picks the task with the highest weight.  If each QC q 

has ql  tasks, let qlp ≤  be a fixed number and a weight is assigned to each task 

qjq lkfori ,...,1,, = as follows: 

{ }∑ +

=
= qlpj

jk kqjq iw ,min
,,  (5.21) 

The weight represents the minimum required time to finish the remaining tasks on 

QC q’s list and depends only on the travelling time between the ship and the containers’ 

location in the storage yard area.  The calculated weight in Equation (5.21) does not 

consider the QC completion time in the first stage.  In the case of multiple QCs, it would 

be better if the YTs were to serve the QC that has a longer makespan and that makespan 

is the completion time for both stages of the problem.  Thus, we have modified Equation 

(5.21) to give a higher priority to the tasks that belong to the QC that has a longer 

makespan.  Specifically, i is modified to include the processing time for both stages.  The 

makespan of each QC is approximated by combining the QC completion time (obtained 

from the initial solution for the first stage) and YT traveling time.  
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The initial solutions were used as one of the individuals in the GA initial 

population.  The remaining ones were generated randomly but the specified lower and 

upper bounds were applied when generating them.  In Step 2, the objective function value 

for every individual was calculated.  These values were stored for creating the next 

generation.  Until the stopping criteria are met (step 3), the GA algorithm continued with 

the creation of new generations (step 4) and repeated the process starting at step 2.  The 

process for creating the next generation is explained in Section 3.3 of this dissertation. 

 

Figure 5.2 Flowchart of developed GA algorithm. (Modified from Kaveshgar et al. 2012) 
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5.3.1 CHROMOSOME REPRESENTATION 

In each generation, GA creates a population of solutions.  Each solution is called a 

chromosome and each gene represents a decision variable.  The chromosome used for 

representing the solutions in this study is composed of two sections as shown in Equation 

(5.22).  The first section represents the solution for the first stage (QC scheduling).  It 

consists of three kinds of genes: Xs are the sequence of tasks assigned to the quay cranes, 

Ks represent the number of tasks assigned to the quay cranes, and finally Hs represent the 

movement direction of each quay crane (ascending or descending).  As mentioned 

previously, solutions with unidirectional movement of the quay cranes are optimal or 

near optimal in most of cases and highly reduces the computational time of the solution 

method.  Thus, here, cranes are limited to unidirectional movement.  The second section 

of the chromosome represents the solution for the second stage of the problem (YT 

scheduling).  It has the same elements as the first section, except for the Hs.   Xs represent 

the sequence of tasks assigned to the YTs and Ks represent the number of tasks assigned 

to each YT.   

 

]......[
122111 2121212121 mnmmn KKKXXXHHHKKKXXXs =  (5.22) 

 

 

Figure 5.3 shows a sample chromosome of a problem with 4 tasks, 2 quay cranes, 

6 containers and 2 trucks.  Tasks (container groups) 1 and 3 are assigned to the first quay 

crane and tasks 2 and 4 are assigned to the second quay crane.  The third part of the 

chromosome indicates that both quay cranes will move from left to right (in ascending 

Section 1 (QCs) Section 2 (YTs) 
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order).  Section two indicates that tasks (containers) 1, 3, 2 and 4 will be transported by 

the first YT, and tasks 5 and 6 will be transported by the second YT.   

 

 

 

 

 

QC No. Task sequence YT No. Task sequence 
1 1, 3 1 1, 3, 2, 4 
2 2, 4 2 5, 6 

Figure 5.3 Chromosome representation. 

 

By defining the lower and upper bound on the decision variables we can further 

reduce the number of decision variables.  The first stage has three different kinds of genes 

and each kind has a unique lower and upper bound.  The first part of the lower bound for 

section one (QCs) is defined based on the locations of the tasks and quay cranes.  Since 

quay cranes share the same track and when two or more quay cranes are assigned to a 

vessel, the first quay crane on the left is the only one that can process the tasks located on 

the first ship bay (left most tasks).   

The lower bound of the first (n-(m-1)) genes of the section one of chromosome is 

1.  The next (m-1) remaining genes’ lower bound is 2, 4, 6,… , m.  The skip in number 

represents of safety margin between the quay cranes (one bay is used in this study).  The 

lower bound for all the genes in section two is equal to 1.   

Part one Part Two 

Section one (QCs) Section two (YTs) 

Part one Part Two Part Three 
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The upper bound of the first (n-(m-1)) genes of section one, is set to n-2(m-1), n-

2(m-1) + 2, n-2(m-1) + 4, ...; for the remaining genes of section one and all genes in 

section two the upper bound is the total number of tasks.  

The lower bound of the second part of the chromosome for both sections is set to 

one task for each equipment (QC or YT) and the upper bound is calculated using the 

procedure described below:  

Step 1. Start by arranging the processing time of tasks in an ascending order (set Q) 

Step 2. Set ,  

Step 3. Set  (5.23) 

Step 4. Rearrange the tasks in a descending order (set G) 

Step 5. Set  (5.24) 

If  stop and set upper limit=i; otherwise, set i=i-1 and go to step 3. 

The above procedure would set a limit on the maximum number of tasks assigned 

to equipment.  The tasks are arranged in an ascending order according to their processing 

time.  The algorithm finds the maximum number of tasks that could be grouped together 

and be assigned to a QC or YT such that its total processing time is not greater than the 

processing time of the longest task.  The number of tasks identified for the group is the 

maximum number of tasks that can be assigned to a QC or YT.   

If the precedence relationship between tasks is not satisfied, then the tasks will be 

swapped.  The GA in MATLAB could create identical values for two genes in the first 

section of the chromosome.  To overcome this shortcoming, we coded a function to 

validate the chromosomes.   
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5.3.2 EVALUATING THE GA OBJECTIVE FUNCTION 

The objective function is a unique part of the GA and must be developed based on 

the particular characteristics of each problem.  The developed objective function in this 

study simulates the container unloading operation and calculates the makespan.  It 

consists of a set of procedures that are repeated until all the tasks are processed.  These 

procedures involve selecting the equipment (QC or YT) with the earliest ready time.  The 

equipment would then process task in its schedule, taking into account operational 

constraints like interference (if it is a QC).  If the equipment needs to wait (e.g. QC has to 

wait for the YT to deliver the container) then a waiting time is added to that equipment 

ready time.  The equipment with the minimum ready time will be the one selected next to 

process a task.  These steps are repeated until all the tasks (containers) are stored in the 

container yard.  The following sections explain how the operational constraints are 

accounted for in the determination of the objective function value. 

Avoiding interference 

The location of each quay crane, the starting and finishing time of each task, and 

where each quay crane is working is tracked by the objective function in GA and stored 

in a matrix data structure.  Each time a quay crane needs to start processing a new task on 

a bay different from the crane’s current bay location, it would check the tasks on adjacent 

bays (to the left and right of the new task’s bay).  If there are tasks being performed by a 

different quay crane that interferes with its movement, then the finishing time of those 

tasks is checked.  If those tasks are not complete, then the current quay crane needs to 

wait; otherwise, it may move to the next task’s location and start the unloading or loading 

operation.   
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QCs’ positions  

Each quay crane has to maintain its initial and final position, and each time a quay 

crane performs a task it has to reevaluate its position and set a destination according to its 

work schedule.  The travel time is determined according to the positions and destinations 

of the quay crane.  Based on the current location of the quay crane, the location of the 

task it will perform next, and the location of other quay cranes, four different destinations 

are possible:  (1) quay crane travels to its assigned task and processes that task, (2) quay 

crane needs to wait to avoid a collision with another crane and then traverses to its next 

task location, (3) quay crane remains idle and will stay at its current position, and (4) 

quay crane remains idle, but needs to move in order to avoid a collision with adjacent 

quay cranes.   

YTs’ travel time  

YTs have to get the containers from the QCs and transport them to the YCs in the 

yard.  Every time a truck transfers a container from a QC to the yard area, a value equal 

to the travel time is multiplied by two and the yard crane operation time is added to its 

current ready time.  If the truck has already reached to its final task in its schedule then 

only one travel time and yard crane operation time is added to its current ready time.   

Makespan time and blocking 

The quay crane’s completion time is calculated based on the processing time of 

the tasks (Pi), the travel time according to one of the four different possibilities stated 

above, and the delay caused by the YT serving that quay crane.  The following example 

illustrates how a crane’s completion time is calculated.   
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Figure 5.4 Illustration of how quay crane’s completion time is determined. 
 

Consider the scenario shown in Figure 5.4 that has 3 quay cranes and 6 tasks 

located on bays 1 to 6.  Tasks 1, 3 and 5 are currently being processed by cranes 1, 2 and 

3, respectively.  Cranes 1 and 3 next tasks are tasks 2 and 6 according to their schedule 

and the second quay crane is done with its assigned tasks after completing task 3.  If 

crane 1 finishes its task earlier than cranes 2 or 3, or crane 2 or 3 need to wait for a truck 

to deliver the container, due to the one bay safety margin, it is not possible for the crane 1 

to perform task 2 until task 3 is finished as well as task 5 because crane 2 needs to move 

over to bay 4 in order for crane 1 to be in bay 2.  After crane 2 finished processing task 3 

and relocated to bay 4 then crane 1 can start task 2 and the total completion time of crane 

1 after processing task 2 is computed as follows: 

122321 },max{ llPCCC −++=  (5.25) 

As shown in the above example, any possible interference between the quay 

cranes and delay caused by YTs is checked and considered in the objective function.  The 

makespan is set as the maximum completion time among all quay cranes. 
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5.3.3 STOPPING CRITERIA  

Different stopping criteria could be specified in MATLAB GA.  In this study the 

following stopping criteria are used: 

• Generations — the algorithm stops after reaching a certain number of generations. 

• Stall generations — the algorithm stops if the weighted average change in the 

objective function value over Stall generations is less than Function tolerance. 

• Function Tolerance — the algorithm stops when the cumulative change in the 

objective function value over Stall generations is less than or equal to the Function 

tolerance (1e-6) over the stall generations limit. 

 

5.4 NUMERICAL EXPERIMENTS AND DISCUSSION 

To demonstrate the solvability of the proposed integrated QC-YT model and to 

gain insight into the integrated solution, the developed GA was evaluated using a total of 

32 instances, ranging from small to large-sized problems.  Data for the first stage of the 

problem (quay crane scheduling) was obtained from benchmark instances developed by 

Meisel and Bierwirth (2011).  These instances provide information such as processing 

time of the tasks, bay location of the tasks, total number of bays, ready times and initial 

location of the quay cranes, and the precedence relationships between the tasks.  These 

instances can be generated using QCSPgen, which is available online at 

http://prodlog.wiwi.uni-halle.de/qcspgen.  For the second stage, the time that it takes a 

YC to perform a loading or unloading operation was generated from a uniform 

distribution (min = 60, max= 130), and the time it takes a YT to transport a container 

from a QC to YT and vice versa was also generated from a uniform distribution (min = 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=03050548&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fprodlog.wiwi.uni-halle.de%252Fqcspgen
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38, max = 70).  These parameter values were taken from Chen et al. (2007).  For all 

instances, the QC travel time is set to one time unit per bay and the safety margin is set to 

one bay.  

The following lists the GA parameter values used in the experiments.   

• Stall generation (nS) = 1000 

• Function Tolerance (eps) = 2.22x10e-16 

• Population size (nP) = 25 individuals 

• Number of generations (nG) = 1000 

The experiments were conducted on a PC with 4 GB of RAM and 2.80 GHz 

processor.  The results obtained from the developed GA for small size problems are 

presented in Table 5.1.  The first column shows the experiment number.  The second 

column shows the problem size consisting of the number of quay cranes, trucks, tasks and 

containers.  The third column shows the objective function values (makespan) obtained 

from CPLEX.  The fourth and fifth columns show the non-integrated solution and its gap, 

respectively.  The non-integrated solution is obtained by using the sequential method.  

That is, the solution from the first stage (QC scheduling) is fed into the second stage 

where a greedy heuristic was used to solve for the YT scheduling.  The sixth and seventh 

columns show the objective function value obtained from the integrated solution method 

(using the developed GA) and its gap, respectively.  It can be seen that the integrated 

solutions match that of CPLEX; that is, the developed GA found the optimal solutions, 

and thus the gap to CPLEX is 0.  Among the seven instances, the sequential method 

found the optimal solution only once.  For the remaining six instances, the gap ranges 

from 6.17 to 41.77%.  These results highlight the effectiveness of the integrated solution. 
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Table 5.1 Comparison of Integrated solution (GA) with sequential (GA-Greedy) and 
CPLEX. 

No Problem size1 CPLEX Non-Integrated Solution Integrated Solution 
Makespan Makespan Gap2 (%) Makespan Gap2 (%) 

1 4×5×2×2 81 86 6.17 81 0 
2 5×5×3×3 79 112 41.77 79 0 
3 5×8×2×4 57 57 0.00 57 0 
4 6×6×2×2 65 72 10.77 65 0 
5 6×6×3×4 72 82 13.89 72 0 
6 6×8×2×2 75 83 10.67 75 0 
7 6×8×2×4 104 114 9.62 104 0 

1 No. of tasks × No. of containers × No. of QCs × No. of trucks 
2 Gap = (makespan− CPLEX makespan)/ CPLEX makespan ×100 
 
Table 5.2 shows the results of larger instances.  The first and second columns 

show the experiment number and problem size.  CPLEX runs were limited to two hours 

and the best solution obtained by it is reported in the third column.  An “N/A” in the third 

columns indicates that CPLEX was not able to obtain a solution.  The fourth columns 

show the CPLEX computation time if a solution was obtained within two hours (7200 

seconds).  The fifth and sixth columns show the objective function value and the 

computation time of the integrated solution method (using the developed GA).  The last 

column shows the gap which measures the difference between the GA solution and the 

CPLEX solution.  A negative gap means that the GA solution was lower (better) than the 

CPLEX solution, in part due to the time limit.  For very large problems (instances 30 to 

32), CPLEX could not find the optimal solution due to either time limit or memory limit.  

Out of the 32 instances, GA obtained the solution much faster than CPLEX, except for 

two instances (1 and 4).  It was observed that GA’s computation time is not as affected as 

CPLEX by the increase in number of containers and trucks.  However, CPLEX can solve 

instances with strong precedence relationships more effectively.  The maximum 

computation time for GA is 108 seconds, which is within acceptable range for operational 

planning problems.   
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Table 5.2 Comparison of GA Performance against CPLEX 
No Problem size1 CPLEX Integrated Solution 

Makespan Time(s) Makespan Time(s) Gap2 (%) 
8 10×10×2×4 810 1554 805 41 -0.62 
9 10×15×2×4 1071 3702.76 998 65.57 -7.31 
10 10×15×3×4 1180 859.86 955 69.40 -23.56 
11 10×20×2×4 1627 1929 1271 86.10 -28.01 
12 10×20×2×6 1212 3577.52 1023 87.56 -18.48 
13 10×20×2×8 1199 2994 799 86.75 -50.06 
14 12×12×2×4 1008 928.08 843 56.91 -19.57 
15 12×12×3×4 1132 921.00 832 83.54 -36.06 
16 12×15×2×4 1273 3168.49 1038 67.58 -22.64 
17 12×15×2×6 816 7200 780 68.46 -4.62 
18 12×20×2×4 1574 1052.34 1332 84.64 -18.17 
19 12×20×2×6 1044 7200 996 107.62 -4.82 
20 12×20×2×8 1092 3012.11 780 89.00 -40.00 
21 14×14×2×4 959 4003.97 951 65.63 -0.84 
22 14×14×3×4 880 7200.21 866 66.95 -1.62 
23 14×14×2×6 738 5660.36 658 64.09 -12.16 
24 14×14×2×8 852 3482.89 636 65.63 -33.96 
25 14×20×2×4 1473 4770.31 1240 69.65 -18.79 
26 15×15×2×4 1302 2160 1062 67.97 -22.60 
27 15×15×2×6 1000 1195.90 825 72.26 -21.21 
28 15×15×2×8 742 7200 726 69.62 -2.20 
29 15×20×2×4 1545 7200 1283 87.31 -20.42 
30 15×20×2×6 N/A N/A 908 84.37 N/A 
31 20×25×2×6 N/A N/A 1123 106.37 N/A 
32 30×35×2×15 N/A N/A 897 151.43 N/A 
1 No. of tasks × No. of containers × No. of QCs × No. of trucks 
2 Gap = (worst solution−Best solution)/ Best solution ×100 

 

To further investigate the performance of the developed GA solution method, the 

effect of the number of yard trucks on the objective function value was evaluated.  In 

total, 16 experiments were generated with 10, 15, 20 and 30 tasks (corresponding to 15, 

20, 25 and 35 containers) and 6, 9, 12 and 15 yard trucks.  In Figure 5.5, the objective 

function value (makespan) obtained from GA (integrated solution) is shown against 

different number of yard trucks.  Each line in the figure corresponds to a problem size 

(10, 15, 20, or 30 tasks).  The results indicated that increasing the number of YTs does 

not result in significant improvement in makespan for small problems (as depicted by the 



www.manaraa.com

 

95 

10-task line); however, it does result in significant improvement for large problems (as 

depicted by the 30-task line).  For all problem sizes, the experiment results indicated that 

increasing the number of yard trucks beyond 12 will yield little to no improvement.  This 

finding is intuitive because at some point, the number of QCs will become the bottleneck 

instead of the YTs.  

 

 

Figure 5.5 Effect of number of YTs on makespan. 
 

Figure 5.6 shows the relationship between the GA computation time and number 

of tasks.  Each line in the Figure corresponds to an operational problem involving 6, 9, 

12, or 15 YTs.  As expected, increasing the problem size will increase the computation 

time.  However, the GA computation time is not greatly affected by the problem size.  

Increasing the problem size three fold (from 10 to 30) does not increase the computation 

three fold.  Higher number of YTs also does not have an effect on the GA computation 

time.  These results suggested that the developed GA approach has the potential to solve 

the integrated QC-YT model for much larger problems within reasonable time. 
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Figure 5.6 Effect of number of tasks on GA computation time. 
 
 

5.5. CONCLUSION 

This study developed a mixed integer programming model for scheduling QCs and 

YTs jointly using the hybrid flow shop scheduling technique.  It extended the existing 

body of work by considering multiple QCs, as well as non-crossing constraints and safety 

margins between QCs.  The formulation is also unique in that the decision variables in 

the first stage of the problem (QC scheduling) used groups of containers instead of 

individual containers.  This technique reduced the number of decision variables 

significantly and consequently the computation time.  To solve the integrated 

optimization model, a genetic algorithm (GA) combined with a greedy algorithm was 

developed.  The experimental results indicated that the solutions obtained from the 

proposed integrated GA algorithm are superior to the sequential approach.  The GA 

solutions demonstrated that the developed integrated model is solvable within reasonable 

time for an operational problem. 
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Key limitations should be considered when reviewing the study results.  These 

include (1) CPLEX results were limited to two hours of runtime, and (2) problem sizes 

were limited to a maximum of 3 QCs and 35 containers.  This research could be extended 

to cover all three vessel operation processes: QC, YT and YC scheduling.  The integrated 

model could be further enhanced to represent reality by considering (1) stochastic task 

processing times for all three equipment rather than deterministic values, (2) different 

productivity rates for QCs and YCs, and (3) different time windows for QCs and YCs.  
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CHAPTER 6 

 

ROBUST SCHEDULING OF TERMINAL CONTAINER HANDLING 

EQUIPMENT1 

 

ABSTRACT 

To lower the vessel turn time, the operations of quay cranes, yard cranes and yard 

trucks need to be coordinated.  The majority of the terminal operation studies have sought 

to optimize these operations individually.  This study develops a robust optimization 

model that schedules all three operations jointly in a holistic manner.  The unique 

difference between this study and previous works is that it accounts for the non-

deterministic nature of container processing times by the quay cranes, yard cranes, and 

yard trucks.  Due to the complexity of the terminal equipment scheduling problems, 

previous works have simplified the problems by assuming deterministic processing times.  

To the best of our knowledge, this is the first study to consider this additional layer of 

complexity.  To deal with the uncertainty in processing times, a model is formulated 

based on a recent robust optimization approach (p-robust).  The objective function of the 

proposed model seeks to minimize the nominal scenario makespan, while bounding the 

makespan of all possible scenarios using the p-robustness constraints.  To solve the 

                                                           
1 Kaveshgar N. and N. Huynh.  Submitted to Computers and Operations Research, 09/17/2014. 
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robust integrated optimization model, a genetic algorithm (GA) is developed.  Several 

numerical examples are considered and the GA solutions are compared against those 

obtained from CPLEX for smaller problems and a lower bound for larger problems.  The 

experimental results demonstrate that the developed robust integrated model is solvable 

within reasonable time for an operational problem.  The comparative analysis between 

the proposed p-robust method and the conventional minimax method indicates that 

solutions produced by p-robust are less conservative.   

 

6.1 INTRODUCTION 

Marine container terminals are an important link in the supply chain because they 

are the interface between land and sea transportation.  To maximize its efficiency, 

terminal operators need to manage their available container-handling equipment 

effectively to minimize the ship turn time to retain or gain a competitive advantage.   

Loading/unloading operation of a vessel starts when a berth is assigned to it.  

Afterwards, quay cranes (QCs) are allocated to unload inbound (import) containers and 

load outbound (export) containers.  Yard trucks (YTs) are then used to transport 

containers between the quay and container yard.  In the container yard, yard cranes (YCs) 

are used to move containers from the YTs to the yard blocks and vice-versa.  Figure 6.1 

illustrates the typical layout of a marine container terminal: a quay with berths for vessels 

to dock and a container yard to store containers.  As illustrated, the operations of the 

QCs, YTs, and YCs are highly connected and they need to work in unison in order to 

minimize the vessel turn time.   

 



www.manaraa.com

 

100 

  

Figure. 6.1. Layout of a marine container terminal. 
 

This study focuses on developing a model for the integrated scheduling of QCs, 

YTs, and YCs for the unloading operations.  The model seeks to capture many of the 

operational characteristics and practical constraints as observed in actual terminal 

operations.  A unique contribution of the proposed model is the explicit consideration of 

the variation in the container processing times.  That is, the time for a QC to unload a 

container from a vessel, YT to transport a container from the quay to the container yard, 

and YC to move the container from the YT to the block is non-deterministic.  To the best 

of our knowledge, this study is the first to consider this additional layer of complexity.  

To deal with the uncertainty in processing times, a model is formulated based on a recent 

robust optimization approach, p-robust (Peng et al., 2011).  The objective function of the 

proposed model seeks to minimize the nominal scenario makespan, while bounding the 

makespan of all possible scenarios using the p-robustness constraints.  Other 

contributions made within the proposed integrated model include: 1) improving upon the 

works by Chen at al. (2007), Lau and Zhao (2008), and Chen at al. (2013) by assuming 

that the container to QCs, YCs and YTs assignment is unknown, 2) enhancing the works 

Quay Crane Yard Crane Yard Truck Container 

 
Quay Area 

Yard Area 
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done by Meersmans (2002), Chen et al. (2007), Lau and Zhao (2008), Zeng and Yang 

(2009), Jinxin et al. (2010), and Chen et al. (2013) by adding the non-interference 

constraints and safety margin for the QCs, and 3) reducing the number of decision 

variables and consequently the computation time by defining tasks as group of containers 

in the first stage of the problem (QC scheduling).  To solve the robust integrated 

optimization model, a GA based solution approach is developed.  To enhance the 

probability of finding the optimal solution and reduce the computation time, heuristics 

are developed to create high quality initial solutions for each stage.  Several numerical 

experiments are conducted and the GA solutions are compared against those obtained 

from CPLEX for smaller problems and a lower bound for larger problems.   

 

6.2 MATHEMATICAL MODELING  

The objective of the integrated model is to find the assignment of inbound 

containers to the equipment and the processing sequence of the containers (vessel → QCs 

→ YTs → YCs) in a way that the latest completion time of containers (makespan) is 

minimized.  The solution needs to satisfy a number of practical constraints: precedence 

relationships between containers, blocking (which occurs when the equipment of the 

subsequent stage is not ready to accept the task/container), QC non-interference, and 

safety margin.   

QCs are mounted on a single rail track alongside the quay and cannot cross each 

other.  Also, a safety margin (a prescribed space between adjacent QCs), has to be kept at 

all times.  In this study, a one ship-bay safety margin is considered between the QCs.  

The assignment of YCs to yard blocks is typically predetermined in practice and is 

assumed to be given as an input and that each YC can process containers within the 
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assigned adjacent yard blocks.  The time that it takes a QC, YC or YT to move between 

one job and the next is referred to as setup time.  Additional assumptions made in this 

study include: 1) task processing times are uncertain, 2) all QCs, YTs and YCs have unit 

capacity, 3) YC or YT setup times are the empty travel times between two consecutive 

container, 4) QCs setup times are based on the number of ship-bays they travel between 

two consecutive tasks, 5) there is precedence relationships between containers, 6) 

task/container to equipment assignment is unknown, 7) there is potential for blocking 

between operations, and 8) the number of quay cranes assigned to a vessel and locations 

of containers and QCs (expressed in terms of bay number) are assumed to be known.   

To address uncertainty in container processing times, the robust approach is 

employed.  A robust solution is one that performs well for a wide range of scenarios.  In 

other words, a robust solution is less sensitive to uncertainty in data (e.g. List et al., 2003, 

Huynh and Walton, 2008 and Peng et al., 2011).  There are different robustness 

measures.  The most commonly used robustness measures are: minimax cost and 

minimax regret.  The minimax cost approach minimizes the maximum cost among all 

scenarios and the minimax regret approach minimizes the maximum regret across the 

scenarios.  As defined in Snyder and Daskin (2006) “the regret in a given scenario is the 

difference between the cost of the solution in that scenario and the cost of the optimal 

solution for that scenario”.  In other words, regret is the difference between the cost of a 

feasible solution for a scenario and the optimal solution for that scenario.  The p-

robustness approach sets an upper bound on the maximum allowable relative regret for 

each scenario (1).  Assuming that there are a set of scenarios E, pe is the deterministic 

minimization problem for scenario e, x is the vector of a feasible solution to pe for all 
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Ee∈ , ce(x) is the objective function value of problem pe under solution x and c*e is the 

optimal objective function value (makespan) for pe, the solution is called p-robust if for 

all Ee∈ : 

 

p
c

cxc

e

ee ≤
−

*

*)(  (6.1) 

or  

 

*)1()( ee cpxc +≤  (6.2) 

 

The p-robustness approach requires that each scenario’s makespan may not be 

more than )%1(100 p+  of the optimal scenario makespan.  Different p values indicate the 

desired robustness.  In Equation (6.2), the right hand side is the relative regret of scenario 

e (Peng et al., 2011 and Hatefi and Jolai, 2014).  The optimal makespan for each scenario 

has to be calculated separately.  By solving the following MIP formulation, the *
ec can be 

calculated for each scenario e.  The proposed model is based on the (HFSS) technique 

and is extended to a p-robust model.   

 

Problem Parameters 

=t  Stage index 

=Ωt  Set of tasks in QC scheduling stage (t=1) and containers at YT and YC scheduling 

stage (t=2, 3). 

=B  Set of first container number in a task }{ ib  
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=H  Set of last container number in a task }{ ih  

=R  Set of the containers in a task, other than the first container in that task 

ib = First container number in a task i 

ih = Last container number in a task i 

=tn  Total number of tasks/containers in stage t 

=ji,  Task/container index 

=tK  Set of machines at stage t (QCs in stage 1, YTs in stage 2 and YC in stage 3) 

=k  Machine index  

=tk  The number of machines at stage t 

=Φ  The set of precedence constrained tasks 

=Ψ k  The set of containers that cannot be processed by YC k 

=il  Bay position  

=kl0  Initial position of quay crane (k) 

=ktf  Earliest available time of machine k at stage t 

=itp  Processing time of task/container i at stage t 

=g  QC travel time 

=δ  Safety margin 

=M  Large positive number 
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)}0()(|),,,{( 22 ≥∆∧<×Ω∈=Θ vw
ijjiQwvji   Set of all possible combinations of a pair 

of tasks and a pair of QCs which need a temporal separation of processing vw
ij∆  for safety 

requirements.   

=ijd  The setup time of yard crane from container i to container j.  It is defined as the YC 

empty movement when it moves from container i to container j. 

Travel time of quay crane k  from 
thi  task to thj  task is assumed to be relative to the ship 

bay numbers ij ll − . 

Dummy containers and tasks are denoted by 0 and T 

Decision variables 





=
Otherwise0

 stageat ely consecutiv task andtask  performsmachine Iff1 tjik
xk

ijt

 





=
Otherwise0

   task of completion after the startstask Iff1 ij
zij

 

=itc  Completion time of task/container i at stage t 

=its  Starting time of task i at stage t 

3Tc = Makespan (latest completion time of all containers at stage 3) 

Objective Function 

Minimize 3Tc  (6.3)
 

Subject to: 

}3,2,1{,10 ∈∀∈∀=∑
Ω∈

tKkx t
j

k
jt

T
t

 (6.4) 
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,3,2,,)1( 10 =∈∀Ω∈∀≥−+ − tKkjcMxs ttjt
k

jtjt  (6.22) 
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3,2,, =∈∀Ω∈∀≤+ tKkicps ttititit  (6.23) 
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{ } { })2,1,,,(1,0, ∈∀∈∀Ω∈∀∈ tKkjizx ttij
k
ijt  (6.25) 

{ })2,1,(0, ∈∀Ω∈∀≥ tisc titit  (6.26) 

Model Explanation 

Equation (6.3) is the objective function that minimizes the makespan.  Constraints 

(6.4) and (6.5) ensure that each machine chooses one dummy task/container (0) as its first 

task/container and chooses one dummy task/container (T) as its last task/container at each 

stage.  Constraints (6.6) ensure that each task/container is processed by one and only one 

machine at each stage.  Constraints (6.7) define the sequence of the tasks/containers: each 

task has only one task before and after itself at each stage.  Constraints (6.8) calculate the 

completion time for each task (container group) in stage 1 and prevent sub-tours.  

Constraints (6.9) ensure that task i be completed before task j if they belong to setΦ .  

Constraints (6.10) assign values (0 or 1) to ijz depending on whether task i preceded task 

j.  Constraints (6.11) assign values (0 or 1) to ijz  depending on whether task j preceded 

task i.  Constraints (6.12) ensure that tasks i and j are not processed simultaneously by v 

and w.  If 1=ijz , constraints (6.13) would insert the necessary time computed by 

Equation (6.20) that has to elapse before two adjacent QCs can process two tasks located 

close to each other.  Constraints (6.14) work in the same manner as (6.13) but for the case 

1=jiz .  Constraints (6.15) restrict the earliest starting time of operations for each QC 

and determine the completion time of the first container in the task.  Constraints (6.16) 

guarantee that the dummy container T is selected as the last container.  Constraints (6.17) 
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compute the completion time of the all containers grouped together as a task.  The 

completion time of the first container in a task is calculated by constraints (6.18).  

Constraints (6.19) guarantee that a container can only be transported to the container yard 

(stage 2) if it has been processed by the QC (stage 1) and the YT has returned to the quay 

area.  Constraints (6.20) guarantee that container j is processed consecutively after 

container i by an YT only after container i has been delivered to an YC and the YT is 

back to the quay area.  Constraints (6.21) guarantee that a container can be processed by a 

YC (stage 3) only after it has been transported to the container yard by the YT (stage 2) 

and after the YC has made it back to the receiving point in the yard block.  Constraints 

(6.22) work in the same manner as Constraints (6.21), but for dummy task 0.  Constraints 

(6.23) state that a container incurs YT/YC travel time/stacking time.  Constraints (6.24) 

ensure that containers are assigned to the correct YC.  Constraints (6.25) and (6.26) 

restrict the domains of the decision variables.   

Constraints (6.12), (6.13) and (6.14) are based on constraints A.11 to A.13 from 

Bierwirth and Meisel (2009).  In this formulation, vw
ij∆ is defined as the minimum time 

span between the processing of tasks i and j assigned to adjacent quay cranes v and w.  

According to Bierwirth and Meisel (2009), vw
ij∆  can be calculated as follows:   

 


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vwδ  is defined as the smallest acceptable distance between the position of the two 

quay cranes v and w.  Additional information about the calculation of vw
ij∆  could be found 

in Bierwirth and Meisel (2009).   

To obtain the robust solution, the objective function, Equation (6.3), is calculated 

for only the nominal scenario (the most likely scenario to happen) and constraints (6.28) 

are added to the formulation.  Moreover, constraints (6.4) to (6.26) have to be satisfied 

for all possible scenarios.  It is assumed that all scenarios, except for the nominal 

scenario, are equally likely to occur.   

}scenarionominal{\1 Eecp) ( c *
ee ∈∀×+≤  (6.28) 

The objective function in the p-robust approach shows that the decision makers 

are more interested in finding a solution that performs well under normal conditions.  The 

p-robustness constraints indicate that they are also interested in making extra investment 

to protect against uncertainty in processing times.  The additional investment depends on 

their desired robustness level (the value for p). 

 

6.3 PROPOSED GENETIC ALGORITHM  

In this study we have developed a genetic algorithm (GA) to solve the integrated 

robust problem.  The key components of the proposed GA are shown in Figure 6.2 and 

are explained in the following subsections.  

 

Initial population and chromosome representation 

In our proposed GA, each chromosome (solution) is composed of a number of 

genes, representing the tasks/containers to be processed.  To limit the value range of 
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decision variables, lower and upper bounds are calculated for the task/container number 

and the number of tasks/containers that can be processed by each stage’s equipment.  The 

technique used for calculating the lower and upper bound is explained in Kaveshgar et al. 

(2012) and Section 3.3 of this dissertation.  In order to reduce the computation time, a 

heuristic is used to create a high quality initial solution for each stage.  The initial 

solution for the QC scheduling stage is based on the S-LOAD rule proposed by 

Sammarra et al. (2007).   

 

Figure 6.2 Flowchart of proposed GA algorithm. (Modified from Kaveshgar et al. 2012) 
 

The initial solution for the YT scheduling is based on a heuristic proposed by Bish 

et al. (2005) and used in Lee et al. (2008).  Bish et al. (2005) proved that their heuristic 
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finds the optimal solution for problems with single QC and near optimal solutions for 

multiple QCs.  Kaveshgar and Huynh (2014) improved upon Bish et al.’s work for 

situations that involve multiple QCs.  In Bish et al. (2005), a weight based on the second 

stage (YT) processing times is calculated and assigned to each container and the YTs 

select containers based on their weight.  In Kaveshgar and Huynh (2014), the processing 

time for both QC and YT stages are considered together to determine the weight.  In this 

study, we have used the improved heuristic by Kaveshgar and Huynh (2014).  The initial 

solution for YC scheduling is based on the first-come first-served principle.  The initial 

solution generated by the aforementioned heuristics is used as one of the individuals in 

the GA initial population.  The remaining individuals are generated randomly with values 

bounded by the determined lower and upper bounds.  Figure 6.3 shows the chromosome 

representation of a solution for a problem consisting of 4 tasks, 6 containers, 2 QCs, 

2YTs and 2YCs.  Tasks 1 to 3 have 1 container each and task 4 has three containers (4, 5, 

and 6).  Each chromosome consists of three sections which represent the QC, YT and YC 

schedules, respectively.  Each section has two parts: sequence of tasks/containers and 

number of tasks/containers assigned to each equipment.  For the chromosome shown in 

Figure 6.2, the results in section two indicates that YT 1 will process 4 containers (1, 3, 2, 

and 4) and YT 2 will process 2 containers (5 and 6). 

After a chromosome is created, it is checked for feasibility and repaired, if 

necessary.  Three procedures are coded as functions to validate and repair the 

chromosomes: (1) if the precedence relationship between tasks/containers is not satisfied, 

then the corresponding genes will be swapped, (2) identical values in the chromosomes 

are eliminated, and (3) if some containers of a QC are assigned to a YT, or some 
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containers of a YT are assigned to a YC, then the container sequence of the two 

equipment must match.  For example, if the container sequence for the QC is 

1→2→3→4→6→5, and the container sequence for the YT is 1→2→3→4→5→6, then 

the YT container sequences have to be changed to 1→2→3→4→6→5.  The QC 

interference is treated differently.  The location of each QC, and the starting and finishing 

times of each task are stored in a matrix data structure.  This information makes it 

possible to check for potential interference between the current QC and neighboring QCs.  

If so, the current QC is forced to wait until the other QCs have moved to their next 

locations.   

 

 

 

 

 

QC No. Task sequence YT No. Container sequence YC No. Container sequence 
1 1, 3 1 1, 3, 2, 4 1 1, 3, 2 
2 2, 4 2 5, 6 2 4, 5, 6 

 

Figure 6.3 Chromosome representation. 
 

Objective Function Evaluation  

Evaluating the objective function or the makespan of the solutions by simulating 

the operations has been proposed and used in several studies (e.g. Zeng and Yang (2009), 

April et al. (2003), Allaoui and Artiba (2004) and Guo et al. (2006)).  Following this 

approach, a function is developed to simulate the operations of QCs, YTs and YCs.  This 

function receives input data (number of cranes and tasks/containers, task/container 

Section two (YTs) Section three (YCs) 

Section one (QCs) 

4 2 3
  

1 2 2 3 1 2 4 5 6 4 2
 

3 1 2 4 5 6 3 3 

Part one Part two Part one Part two Part one Part two 
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locations, QC initial locations, safety margin, precedence relationship between tasks, etc.) 

and returns the makespan of each chromosome.   

 

Stopping criteria  

Different stopping criteria could be used for terminating the GA.  In this study, the 

following stopping criteria are used: 

 

• Generations — the GA stops after reaching a certain number of generations. 

• Stall generations — the GA stops if the change in the fitness value over a certain 

number of generations (stall generations) is less than a predefined value (1e-6). 

 

Next generation, crossover, mutation and selection  

In each generation, GA uses the current population to create children for the next 

generation.  A group of individuals in the current population with better fitness values 

(parents) are selected which will contribute their genes to the next generation.  Three 

types of children are created: (1) elite children, the individuals with the best fitness values 

in current generation automatically survive to the next generation, (2) crossover children, 

created by exchanging genes between the vectors of a pair of parents, and (3) mutation 

children, created by making random changes, or mutations, to a single parent’s genes.  

Crossover fraction indicates the fraction of population that will be created by the 

crossover operation.  It ranges from 0 to 1.  After preliminary tests with the “scattered 

crossover”, “ordered crossover” and “two point crossover” functions, the “ordered 
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crossover” function was found to be the most successful, and thus, was used in the 

proposed GA.  This function was also used in the work done by Jinxin et al. (2010).  

To prevent the search algorithm from stalling at a local optimum, some children 

are created by mutation.  In this study, based on the mutation probability, the mutation 

operator randomly selects a chromosome and then randomly selects two genes in one 

section of that chromosome and exchanges them.  This procedure has also been used in 

the work done by Jinxin et al. (23).  For the selection procedure, “roulette wheel 

selection” is used.  The probability of selecting an individual is proportional to its fitness 

value.  For this study, the fitness value is equal to the inverse of the makespan of the 

solution (calculated in step 2).  The lower the makespan, the higher the fitness value and 

the probability of that individual being selected.   

 

GA for p-robust model 

The integrated model is solved for each scenario to find *
ec .  From the solution 

)(x , the objective function value )(0 xc  for the nominal scenario, as well as the scenario’s 

makespan )(xce  can be calculated.  Instead of using the makespan to evaluate the quality 

of the solution, the following equation is proposed to evaluate the solution of the p-robust 

model: 

Minimize +

∈
∑ ×+−×+

Ee
se cpxcxc ))1()(()( *

0
ω  (6.29) 

In Equation (6.29), the parameter ω  is the penalty for violating the p-robust 

constraints.  Based on the results reported by Peng et al. (2011) and findings from 

preliminary experiments, 50 was found to be an appropriate value for ω .   
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6.4. NUMERICAL EXPERIMENTS AND DISCUSSION 

A series of numerical experiments are performed to evaluate the performance of 

the proposed model and solution approach.  The GA is coded in MATLAB 2011a, and 

the experiments are run on a desktop computer with a 2.80 GHz processor and 4 GB of 

RAM.  Two sets of problems are tested: small with a maximum of 8 containers (instances 

1 to 4 in Table 6.1) and large with the number of containers ranging from 15 to 90 

(instance 5 in Table 6.1 and Table 6.2 and instances 6 to 17 in Table 6.2).  CPLEX runs 

are limited to two hours and instance 5 cannot be solved optimally by CPLEX within the 

two hour time limit.  Therefore, instance 5 is repeated in Table 6.2 with the remaining 

large instances.  The task/container processing times are generated based on the uniform 

distribution and parameter values (in seconds) reported in (Chen et al., 2007): 

 

• U(105, 161) for a QC to complete a task 

• U(60, 130) for a YT to transport a container to the yard 

• U(38, 70) for a YC to transfer a container from the YT to the yard block 

 

Precedence relationship is assumed between tasks.  Setup times are considered for 

QC, YC and YT empty movements.  The setup time for QCs is defined as the number of 

ship bays that they need to travel between two consecutive tasks.  The YTs setup time is 

the same as the container transport time.  YCs setup times are generated randomly from 

U(10, 50).   

Uncertainty in processing times is created following the approach used by Lau 

and Zhao (2008) where 9 different variations of the distributions are considered.  That is, 
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given ),( meanmeanmeanmeanU ×∆+×∆− , 8 additional variations are generated using 

different values for ∆  (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9).  The value of p is selected 

by the decision maker.  Based on Peng et al. (2011) and findings from preliminary 

experiments, we chose to run all instances with p = 0.15.  The GA parameters and their 

values are set as follows for the experiments.   

• Population size = 100 individuals 

• Stall generation = 40 

• Function Tolerance = 1e-6 

• Number of generations = 70 

• Crossover probability = 0.9 

• Mutation probability = 0.9 

Performance of integrated model 

The results for the smaller set are benchmarked using the branch and cut 

algorithm in CPLEX.  CPLEX runs are limited to two hours.  CPLEX cannot find an 

optimal solution for larger instances within the time limit.  Thus, in order to evaluate the 

GA performance for larger instances, the lower bound developed by Nahavandi and 

Gangraj (2014) is used.  Their lower bound has been proposed for flexible flow shop 

problems with unrelated parallel machines.  It takes into account the machines’ waiting 

times at each stage and each machine’s workload to estimate the time needed by the last 

job (i.e. task/container) to pass through all the stages.   

The results for the integrated model (Equations (6.3) to (6.26)) are reported in 

Table 6.1.  The first column shows the experiment number, the second column shows the 

problem size consisting of the number of tasks, containers, QCs, YTs and YCs.  The third 
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column shows the makespan values obtained from the lower bound.  The fourth and fifth 

columns show the makespan obtained from CPLEX and associated computation time.  

The sixth column shows the gap between the CPLEX results and the lower bound.  The 

seventh column shows the initial solution and its gap, respectively.  The eighth and ninth 

columns show the objective function value obtained from GA and its gap in comparison 

with lower bound, respectively.  It can be seen that the proposed GA results match that of 

CPLEX for the first four instances.  Note that CPLEX could not find the optimal solution 

for instance 5 within two hours.  The solution (makespan) obtained at the end of the two-

hour run (1207) is higher than the GA solution (1175).  For smaller instances (instances 1 

to 4), CPLEX is faster than developed GA; however, GA’s computation time is not as 

affected as CPLEX by the increase in problem size.   

 

Table 6.1 Comparison of GA Performance against CPLEX for Small Problems 

No Problem size1 
LB CPLEX Initial Solution Integrated GA 

Makespan Makespan Time 
(s) 

Gap2 

(%) Makespan Gap2 

(%) 
Makespan Time 

(s) 
Gap3 

(%) 
1 4×5×2×3×2 592 609 1 2.87 654 10.47 609 86 2.87 
2 6×8×2×4×2 705 709 26 0.57 1091 54.75 709 210 0.57 
3 5×5×3×3×3 434 451 3 3.92 686 58.06 451 143 3.92 
4 5×5×3×3×3 505 519 186 2.77 714 41.38 519 211 2.77 
5 10×15×2×4×5 1159 1207 >7200 4.14 1239 6.90 1175 402.37 1.38 

1 No. of tasks × No. of containers × No. of QCs × No. of trucks × No. of yard cranes 
2 Gap = (makespan obtained by CPLEX−LB)/ LB×100 

3 Gap = (makespan obtained by the solution algorithm−LB)/ LB×100 
 

Table 6.2 shows the results for larger instances.  The first and second columns 

show the experiment number and problem size.  The third column shows the lower bound 

value.  The fourth and fifth columns show the objective function value and the 

computation time of the GA.  The last column shows the gap which measures the 

difference between the GA solution and the lower bound value.  The gap is less than 5% 

up to instance 14 with 60 containers and 3 QCs.  For larger problems with 4 QCs and 70 
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to 90 containers (instances 16 and 17), the gap ranges from 6% to 8%.  This finding is 

consistent with the results reported in the work by Chen et al. (2007) and Jinxin et al. 

(2010); both studies also dealt with the integrated scheduling of QCs, YTs and YCs in 

container terminals.  As expected, the GA’s computation time increases with problem 

size, but its computation time remains within reasonable range for fairly large problems. 

 

Table 6.2 Comparison of GA Performance against Lower Bound for Large Problems 
No Problem size1 LB Integrated GA 

Makespan Makespan Time(s) Gap2 (%) 
5 10×15×2×4×5 1159 1175 402.37 1.38 
6 30×30×2×5×6 2117 2145 286.28 1.32 
7 30×30×2×10×5 2084 2112 348.56 1.34 
8 30×30×2×5×5 2149 2247 285.77 4.56 
9 30×35×2×10×5 2383 2474 382.61 3.82 
10 30×35×2×5×5 2383 2444 333.77 2.56 
11 60×70×2×15×10 4775 4962 955.19 3.92 
12 50×60×3×10×10 2807 2846 851.03 1.39 
13 50×60×3×15×10 2798 2930 955.54 4.72 
14 60×60×3×15×10 2674 2752 932.76 2.92 
15 60×70×3×15×10 3224 3425 1110.91 6.23 
16 60×70×4×15×10 2459 2611 1371.53 6.18 
17 70×90×4×15×10 3195 3454 1640.79 8.11 

1 No. of tasks × No. of containers × No. of QCs × No. of trucks × No. of yard cranes 
2 Gap = (makespan obtained by the solution algorithm−LB)/LB×100 

 

Performance of p-robust problem 

Table 6.3 shows the results obtained for the p-robust problem.  The first and 

second columns show the experiment number and problem size.  The third column shows 

the solution found by CPLEX.  The fourth and fifth columns show the objective function 

value and the computation time of the developed GA.  The last column shows the gap 

between the GA solution and CPLEX solution.  As shown, GA’s results match that of 

CPLEX for the first 5 instances.  For larger problems (instances 6 to 15), CPLEX is 

unable to obtain the optimal solution within two hours. 
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Table 6.3 Performance comparison of GA approach with CPLEX for p-robust model 

No Problem size1 
CPLEX Integrated GA 

Makespan Time(s) Makespan Time(s) Gap2 
(%) 

1 4×5×2×2×3×4 609 <1 609 80.87 0 
2 5×5×3×3×3×9 519 <1 519 90.2 0 
3 6×6×2×4×3×9 633 3.45 633 287.47 0 
4 6×8×3×6×2×9 668 141 668 445.48 0 
5 7×9×3×6×2×9 687 1040 687 447.82 0 
6 8×10×3×6×2×9 n/a >7200 806 474.48 n/a 
7 10×15×2×4×5×9 n/a >7200 1175 548.64 n/a 
8 30×30×2×5×6×9 n/a >7200 2145 1139.58 n/a 
9 30×30×2×10×5×9 n/a >7200 2108 384.6 n/a 

10 30×30×2×5×5×9 n/a >7200 2247 1128.79 n/a 
11 30×35×2×10×5×9 n/a >7200 2474 1397.28 n/a 
12 30×35×2×5×5×9 n/a >7200 2444 1285.64 n/a 
13 60×70×2×15×10×9 n/a >7200 4962 2470.08 n/a 
14 50×60×2×15×10×9 n/a >7200 2846 2433.06 n/a 
15 60×70×3×15×10×9 n/a >7200 3425 2405.52 n/a 

1 No. of tasks × No. of containers × No. of QCs × No. of trucks × No. of yard cranes 
2 Gap = (makespan obtained by the solution algorithm−LB)/LB×100 

 

Comparison of p-robust against minimax robust criterion 

One of the most widely used robustness measure is minimax.  From a managerial 

point of view, the solution of the minimax approach is often considered too conservative 

because it accounts for the worst-case scenario.  Given that the probability of the worst 

case scenario occurring is very small, a less conservative approach is to find a solution 

for the nominal scenario (one that is mostly likely to occur).  To demonstrate the 

difference between the two approaches, the proposed model is applied on a test problem 

(instance 5 of Table 6.3) to compare the p-robustness criterion against the minimax cost 

criterion.  The objective function used for minimax cost is:  

 

)(maxCost)(Minimax xcMinimize eEe∈
 (6.30) 
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Results of the comparison are reported in Table 6.4 and both models are solved by 

CPLEX.  The first column shows the scenario number.  The second column shows the 

optimal scenario makespan.  The third and fourth columns show the scenario makespan 

and the relative regret by the p-robust approach.  The fifth and sixth columns indicate the 

scenario makespan and the relative regret by the minimax cost approach.  The last 

column shows the percentage difference between the p-robust and minimax methods.  A 

positive value in the last column indicates that the scenario makespan obtained by p-

robust method is smaller than that obtained by the minimax cost method.  The “Diff” is 

greatest for the nominal scenario (9.17%).  This means that the makespan using the p-

robustness approach is 9.17% lower than minimax approach for the nominal scenario.  

This is important because the nominal scenario is the most likely scenario to happen and 

decision makers are more interested in obtaining a solution that performs well under 

normal conditions (nominal scenario).  Although the “Diff” is less than 0 for the 

remaining scenarios (except for scenario 2) the relative regret is controlled in the p-

robustness approach (relative regret is less than 15%) for all scenarios.   

 

Table 6.4 Comparison with other robust criteria for test Problem 5 of Table 6.3 
S *

sc  p-Robust Minimax  
Makespan Relative regret Makespan Relative regret Diff1 (%) 

0 687 687 1.000 750 1.092 9.17 
1 726 756 1.041 738 1.017 -2.38 
2 730 730 1.000 768 1.052 5.20 
3 734 750 1.022 734 1.000 -2.13 
4 697 727 1.043 699 1.003 -3.85 
5 752 789 1.049 752 1.000 -4.69 
6 684 737 1.077 734 1.073 -0.41 
7 701 765 1.091 726 0.036 -5.10 
8 651 743 1.141 707 1.086 -4.84 

1Diff = (makespan by Minimax – makespan by p-robust /makespan by p-robust) ×100 
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6.5 CONCLUSION 

The efficient scheduling of QCs, YTs and YCs in container terminals is critical as 

it contributes to the terminal productivity and throughput.  This study presented a robust 

integrated model to schedule QCs, YTs and YCs jointly.  The proposed model is the first 

to consider the non-deterministic nature of container processing times.  The integrated 

model is formulated based on a recent robust optimization approach: p-robust.  With the 

p-robust method the makespan of the nominal scenario is minimized while bounding the 

makespan of all possible scenarios.  Several numerical experiments were solved using a 

proposed GA solution approach and the solutions were compared against those obtained 

from CPLEX (for smaller problems) and a lower bound (for larger problems).  The 

results demonstrated that the proposed GA can successfully solve the robust integrated 

model and find high quality solutions within reasonable time for an operational problem.  

The comparative analysis between the proposed p-robust method and the conventional 

minimax method demonstrated that solutions produced by p-robust are less conservative.   

This study proposed a model that considered non-deterministic container 

processing times in an effort to improve the accuracy of the models by incorporating 

additional operational characteristics as observed in actual terminal operations.  Other 

uncertainties and complexities in operations that need to be addressed include yard 

congestion, delays due to equipment breakdown or scheduled breaks, and productivity 

rate of each container handling equipment and operator.  
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

 

In this dissertation, four completed research studies are presented that address critical 

equipment scheduling problems in container terminals.  The efficient solutions to these 

problems will enhance terminal productivity and competitiveness.   

In Chapter 3 of this dissertation a more efficient solution approach for the QC 

scheduling problem is presented.  Several studies have proposed the use of GA to solve 

the QC scheduling problem.  In this dissertation the GA available in MATLAB 7.13 was 

used for solving the QC scheduling problem.  The efficiency of the GA search is 

improved by 1) using an initial solution, 2) a new approach for defining the 

chromosomes, and 3) using new procedures for calculating tighter lower and upper 

bounds for the decision variables.  The effectiveness of our proposed method is tested on 

several experiments.  The results show that the developed GA provides solutions in a 

faster time for larger problems compared to the available best-known solutions.   

In Chapter 4, the QC scheduling problem with time windows (QCSPTW) is 

studied.  Time windows add an additional layer of complexity to the QCQP.  An efficient 

GA is developed for solving the QCSPTW.  The GA proposed in this research differs 

from the related work in that 1) QCs are allowed to move in different directions 

independently, and 2) QCs are allowed to change their directions in specific situations.  

The proposed solution method is tested on numerous experiments.   
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Experiments showed that the developed GA can provide high quality solutions in 

a faster time for medium and large-sized instances.  In instances with fragmented time 

windows the developed GA improved the solution quality.   

In Chapter 5, a new mathematical formulation for integrated QC and truck 

scheduling is presented.  The formulation is based on the hybrid flow shop scheduling 

technique.  The existing literature is extended by considering multiple QCs, non-crossing 

constraints, safety margins between QCs, and using a group of containers instead of 

individual containers in the QC scheduling.  By considering groups of containers it 

reduces the number of decision variables significantly and consequently the computation 

time.  A GA combined with a greedy algorithm is developed for solving the integrated 

problem.  The experimental results show that the solutions obtained from the proposed 

integrated GA are superior to the sequential approach and that the developed integrated 

model is solvable within reasonable time for an operational problem. 

In Chapter 6, an integrated model for all three scheduling problems is presented: 

QC, YT, and YC scheduling problems.  The integrated model is further enhanced to 

represent reality by considering non-deterministic task processing times rather than 

deterministic values.  There are several techniques for dealing with uncertainty, and the 

most applied robustness criteria in the literature are: minimax cost and minimax regret.  

More recent studies have recommended and used the p-robustness measure.  This 

dissertation proposes the p-robustness technique and an efficient GA for solving the 

robust problem.  The results demonstrate that the proposed GA can successfully solve the 

robust integrated model and find high quality solutions within reasonable time for an 

operational problem.  The comparative analysis between the proposed p-robust method 
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and the conventional minimax method shows that the solutions produced by p-robust are 

less conservative.   

The following areas are worthwhile for further study: Bierwirth and Meisel 

(2009) showed that branch and bound can be used to solve the QCSP efficiently by 

restricting QCs to unidirectional movements.  This approach could potentially be 

extended to solve the integrated scheduling problems.  This dissertation considered non-

deterministic container processing times to better reflect the actual dynamics of terminal 

operations.  Additional operational characteristics as observed in terminal operations 

should be considered in future models to improve their accuracies, such as yard 

congestion, equipment failure or scheduled breaks, and productivity rate of each 

container handling equipment and operator.  Lastly, integrated models could be further 

extended by considering loading and unloading operations jointly. 
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